Skip to main content
Log in

Evaluation of gamma irradiation effect on physico-chemical properties of a mixed beverage based in soy milk and grape juice

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effect of gamma radiation on the physico-chemical parameters in a mixed beverage (white or red grape juice + soy milk). The radiation doses were used: 1, 3, 6 and 9 kGy. Most of the parameters evaluated did not change in both beverages at different doses, with the exception of the 9 kGy dose that reduced the antioxidant capacity and the phenolic compounds, and increased the peroxidase. Thus, the gamma radiation can be used in mixed beverages, but doses below 9 kGy, avoiding changes in physico-chemical quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Missão MR (2006) Soja: origem, classificação, utilização e uma visão abrangente do mercado. Mar Manag Rev Ciências Empres 3:7–15

    Google Scholar 

  2. FIESP (Federação das Indústrias do Estado de São Paulo) (2016) Soja e Suas Riquezas. http://www.fiesp.com.br/sindimilho/sobre-o-sindmil

  3. Boatto DA, Mesomo MC, Madrona GS et al (2010) Desenvolvimento e caracterização de queijo tipo petit suisse de soja comum e de soja livre de lipoxigenase, enriquecidos com cálcio. Ciência Tecnol Aliment 30:766–770

    Article  Google Scholar 

  4. Ciabotti S, De Fátima M, Barcelos P et al (2007) Características sensoriais e físicas de extratos e tofus de soja comum processada termicamente e livre de lipoxigenase. Ciência Tecnol Aliment 27:643–648

    Article  CAS  Google Scholar 

  5. Behrens JH, Da Silva MAAP (2004) Atitude do consumidor em relação à soja e produtos derivados. Ciência Tecnol Aliment 24:431–439

    Article  Google Scholar 

  6. Torrezan R, Ceccato CM, Carla A et al (2004) Avaliação do perfil sensorial de alimento com soja sabor laranja. B CEPPA 22:199–216

    Google Scholar 

  7. Meirelles A, Danielle V, Dias O et al (2012) A ingestão de alimentos funcionais e sua contribuição para a dIminuição da incidência de doenças. Ciencias Biol Saúde 1:43–52

    Google Scholar 

  8. Kruger CL, Mann SW (2003) Safety evaluation of functional ingredients. Food Chem Toxicol 41:793–805. https://doi.org/10.1016/S0278-6915(03)00018-8

    Article  CAS  Google Scholar 

  9. Comarella CG, Sautter CK, Ebert LC, Penna NG (2012) Polifenóis totais e avaliação sensorial de suco de uvas Isabel tratadas com ultrassom. Braz J Food Technol 4:69–73. https://doi.org/10.1590/S1981-67232012005000042

    Article  Google Scholar 

  10. Lima Filho T, Teixeira LJQ, Rocha CT et al (2012) Energia ionizante na conservação de alimentos: revisão. B CEPPA 30:243–254

    CAS  Google Scholar 

  11. Brasil, Agência Nacional de Vigilância Sanitária (ANVISA) (2001) RDC no 21 de 26 de janeiro de 2001. Aprova o Regulamento técnico para irradiação de alimentos. Diário Oficial da República Federativa do Brasil, Brasília, DF

  12. Lacroix M et al (2002) Use of gamma irradiation to produce films from whey, casein and soya proteins: structure and functionals characteristics. Radiat Phys Chem 63:827–832

    Article  CAS  Google Scholar 

  13. De Barros EA, Broetto F, Bressan DF et al (2014) Chemical composition and lipoxygenase activity in soybeans (Glycine max L. Merr.) submitted to gamma irradiation. Radiat Phys Chem 98:29–32. https://doi.org/10.1016/j.radphyschem.2013.12.040

    Article  Google Scholar 

  14. Lee JW, Kim JK, Srinivasan P et al (2009) Effect of gamma irradiation on microbial analysis, antioxidant activity, sugar content and color of ready-to-use tamarind juice during storage. LWT—Food Sci Technol 42:101–105. https://doi.org/10.1016/j.lwt.2008.06.004

    CAS  Google Scholar 

  15. Kim D, Song H, Lim S et al (2007) Effects of gamma irradiation on the radiation-resistant bacteria and polyphenol oxidase activity in fresh kale juice. Radiat Phys Chem 76:1213–1217. https://doi.org/10.1016/j.radphyschem.2006.12.003

    Article  CAS  Google Scholar 

  16. Song HP, Kim DH, Jo C et al (2006) Effect of gamma irradiation on the microbiological quality and antioxidant activity of fresh vegetable juice. Food Microbiol 23:372–378. https://doi.org/10.1016/j.fm.2005.05.010

    Article  CAS  Google Scholar 

  17. Mishra BB, Gautam S, Sharma A (2011) Shelf life extension of sugarcane juice using preservatives and gamma radiation processing. J Food Sci 76:M573–M578. https://doi.org/10.1111/j.1750-3841.2011.02348.x

    Article  CAS  Google Scholar 

  18. Naresh K, Varakumar S, Variyar PS et al (2014) Enhancing antioxidant activity, microbial and sensory quality of mango (Mangifera indica L.) juice by γ-irradiation and its in vitro radioprotective potential. J Food Sci Technol 52:4054–4065. https://doi.org/10.1007/s13197-014-1502-8

    Article  Google Scholar 

  19. Grolichova M, Dvořák P, Musilova H (2004) Employing ionizing radiation to enhance food safety—a review. Acta Vet Brno 73:143–149

    Google Scholar 

  20. Diehl JF (2002) Food irradiation—past, present and future. Radiat Phys Chem 63:211–215

    Article  CAS  Google Scholar 

  21. Brasil, Ministério da Agricultura e do Abastecimento (2000) Normativa n. 01. de 7 de janeiro de. Regulamento técnico para fixação dos padrões de identidade e qualidade para suco de uva. Diário Oficial da República Federativa do Brasil, Brasília, DF

  22. Venturini Filho WG (2010) Bebidas não alcoolicas: ciência e tecnologia. Blucher, São Paulo

    Google Scholar 

  23. Lee JW, Oh SH, Kim JH et al (2007) The effect of irradiation temperature on the non-enzymatic browning reaction in cooked rice. Radiat Phys Chem 76:886–892. https://doi.org/10.1016/j.radphyschem.2006.07.004

    Article  CAS  Google Scholar 

  24. Brasil, Ministério da Saúde, Agência Nacional de Vigilância Sanitária (2005) Métodos físico-químicos para análise de alimentos, 4th edn. Instituto Adolfo Lutz, São Paulo

    Google Scholar 

  25. Nelson N (1944) A fotometric adaptaion of Somogyi method for the determination of glucose. J Biol Chem 153:375–380

    CAS  Google Scholar 

  26. Singleton VL, Orthofer R, Lamuela RM (1999) Analysis of total phenol and other oxidation substrates and antioxidants by means of Folin–Ciocauteau reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  27. Kallithraka S et al (2005) Determination of major anthocyanin pigments in Hellenic native grape varieties (Vitis vinifera sp.): association with antiradical activity. J Food Comp Anal 18:375–386

    Article  CAS  Google Scholar 

  28. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  29. Peixoto HPP, Cambraia J, Sant’Ana R et al (1999) Aluminium effects on lipid peroxidation and the activities of enzymes of oxidative metabolism in sorghum. Rev Bras Fisiol Veg 11:137–143

    CAS  Google Scholar 

  30. Kar M, Mishra D (1976) Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol 57:315–319

    Article  CAS  Google Scholar 

  31. Axelrod B, Cheesbrough TM, Laakso S (1981) Lipoxygenase from soybeans. Methods Enzymol 71:441–451

    Article  CAS  Google Scholar 

  32. Silva FASE, Azevedo CAV (2009) Principal components analysis in the software assistant-statistical attendance. World Congr. Comput. Agric

  33. Bhat R, Sridhar KR, Tomita-Yokotani K (2007) Effect of ionizing radiation on antinutritional features of velvet bean seeds (Mucuna pruriens). Food Chem 103:860–866. https://doi.org/10.1016/j.foodchem.2006.09.037

    Article  CAS  Google Scholar 

  34. Song HP, Byun MW, Jo C et al (2007) Effects of gamma irradiation on the microbiological, nutritional, and sensory properties of fresh vegetable juice. Food Control 18:5–10. https://doi.org/10.1016/j.foodcont.2005.07.013

    Article  CAS  Google Scholar 

  35. de Abreu CRA, Pinheiro AM, Maia GA et al (2007) Avaliação química e físico-química de bebidas de soja com frutas tropicais. Aliment Nutr 18:291–296

    Google Scholar 

  36. Brunelli LT, Venturini Filho WG (2012) Caracterização química e sensorial de bebida mista de soja e uva. Aliment Nutr 23:467–473

    CAS  Google Scholar 

  37. Rodrigues RDS, Moretti RH (2008) Caracterização físico-química de bebida protéica elaborada com extrato de soja e polpa de pêssegos. B CEPPA 26:101–110

    CAS  Google Scholar 

  38. Moreno-Montoro M, Olalla-Herrera M, Gimenez-Martinez R et al (2015) Phenolic compounds and antioxidant activity of Spanish commercial grape juices. J Food Compos Anal 38:19–26. https://doi.org/10.1016/j.jfca.2014.10.001

    Article  CAS  Google Scholar 

  39. Özcan MM, Alpar Ş, Al Juhaimi F (2015) The effect of boiling on qualitative properties of grape juice produced by the traditional method. J Food Sci Technol 52:5546–5556. https://doi.org/10.1007/s13197-014-1628-8

    Article  Google Scholar 

  40. Granato D, Koot A, Schnitzler E, van Ruth SM (2015) Authentication of geographical origin and crop system of grape juices by phenolic compounds and antioxidant activity using chemometrics. J Food Sci 80:C584–C593. https://doi.org/10.1111/1750-3841.12794

    Article  CAS  Google Scholar 

  41. Lima MDS, Silani IDSV, Toaldo IM et al (2014) Phenolic compounds, organic acids and antioxidant activity of grape juices produced from new Brazilian varieties planted in the Northeast Region of Brazil. Food Chem 161:94–103. https://doi.org/10.1016/j.foodchem.2014.03.109

    Article  CAS  Google Scholar 

  42. Tewari K, Kumari S, Vinutha T et al (2014) Gamma irradiation induces reduction in the off-flavour generation in soybean through enhancement of its antioxidant potential. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-014-3803-9

    Google Scholar 

  43. Vargas PN, Hoelzel SC, Rosa CS (2008) Determinação do teor de polifenóis totais e atividade antioxidante em sucos de uva comerciais. Aliment Nutr 19:11–15

    CAS  Google Scholar 

  44. Al XU et al (2000) Differential developmental expression and cell type specificity of dictystelium catalases and their response to oxidative stress and UV light. Biochem Biophys Acta 149:295–310

    Google Scholar 

  45. Foyer CH, Noctor G (2005) Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  46. De Freitas AA, Francelin MF, Hirata GF et al (2008) Atividades das enzimas peroxidase (POD) e polifenoloxidase (PPO) nas uvas das cultivares benitaka e rubi e em seus sucos e geléias. Food Sci Technol 28:172–177

    Article  Google Scholar 

  47. Luíz RC, Hirata TAM, Clemente E (2007) Cinética de inativação da polifenoloxidase e peroxidase de abacate (Persea americana Mill.). Ciência Agrotecnol 31:1766–1773

    Article  Google Scholar 

  48. Clemente E, Pastore GM (1998) Peroxidase and polyphenoloxidase, the importance for food technology. Ciênc Tecnol Aliment 32:167–171

    Google Scholar 

Download references

Acknowledgements

We are grateful to IPEN by irradiating the samples and EMBRAPA-Soybean for donating the soy cultivar BRS-258.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Broetto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Barros, É.A., Costa, V.E., Bressan, D.F. et al. Evaluation of gamma irradiation effect on physico-chemical properties of a mixed beverage based in soy milk and grape juice. J Radioanal Nucl Chem 316, 29–36 (2018). https://doi.org/10.1007/s10967-018-5738-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5738-z

Keywords

Navigation