Skip to main content
Log in

Evaluation of the impacts of gamma radiolysis on an ALSEP process solvent

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Separating the minor actinide elements (americium and curium) from the fission product lanthanides is an important step in closing the nuclear fuel cycle. Isolating the minor actinides will allow transmuting them to short lived or stable isotopes in fast reactors, thereby reducing the long-term hazard associated with these elements. The Actinide Lanthanide Separation Process (ALSEP) is being developed by the DOE-NE Material Recovery and Waste Form Development Campaign. The impact of gamma radiolysis upon the efficacy of the ALSEP process was previously evaluated by determining americium, europium, and cerium distribution ratios as a function of absorbed dose using samples taken from this set of test loop irradiations. The measured distribution ratios demonstrated that the ALSEP solvent performance was degraded by γ-irradiation. The compositional analysis of the irradiated ALSEP solvent samples revealed that the decrease in americium, europium, and cerium distribution ratio with increasing absorbed dose is primarily attributable to the loss of the T2EHDGA extractant due to radiolytic degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Todd TA (2010) Separation research for advanced nuclear fuel cycles. In: Wai CM, Mincher BJ (eds) Nuclear energy and the environment. American Chemical Society, Washington, DC, pp 13–18

    Chapter  Google Scholar 

  2. Leoncini A, Huskens J, Verboom W (2017) Ligands for f-element extraction used in the nuclear fuel cycle. Chem Soc Rev 46(23):7229–7273

    Article  CAS  Google Scholar 

  3. Geist A, Müllich U, Magnusson D, Kaden P, Modolo G, Wilden A, Zevaco T (2012) Actinide(III)/lanthanide(III) separation via selective aqueous complexation of actinides(III) using a hydrophilic 2,6-bis(1,2,4-triazin-3-yl)-pyridine in nitric acid. Solvent Extr Ion Exch 30:433–444

    Article  CAS  Google Scholar 

  4. Taylor R, Carrott M, Galan H, Geist A, Hères X, Maher C, Mason C, Malmbeck R, Miguirditchian M, Modolo G, Rhodes C, Sarsfield M, Wilden A (2016) The EURO-GANEX process: current status of flowsheet development and process safety studies. Procedia Chem 21:524–529

    Article  Google Scholar 

  5. Carrott M, Bell K, Brown J, Geist A, Gregson C, Hères X, Maher C, Malmbeck R, Mason C, Modolo G, Müllich U, Sarsfield M, Wilden A, Taylor R (2014) Development of a new flowsheet for co-separating the transuranic actinides: the “EURO-GANEX” process. Solvent Extr Ion Exch 32:447–467

    Article  CAS  Google Scholar 

  6. Macerata E, Mossini E, Scaravaggi S, Mariani M, Mele A, Panzeri W, Boubals N, Berthon L, Charbonnel M-C, Sansone F, Arduini A, Casnati A (2016) Hydrophilic clicked 2,6-bis-triazolyl-pyridines endowed with high actinide selectivity and radiochemical stability: toward a closed nuclear fuel cycle. J Am Chem Soc 138:7232–7235

    Article  CAS  Google Scholar 

  7. Lumetta GJ, Gelis AV, Carter JC, Niver CM, Smoot MR (2014) The actinide-lanthanide separation concept. Solvent Extr Ion Exch 32:333–347

    Article  CAS  Google Scholar 

  8. Gelis AV, Lumetta GJ (2014) Actinide Lanthanide Separation Process—ALSEP. Ind Eng Chem Res 53:1624–1631

    Article  CAS  Google Scholar 

  9. Peterman D, Geist A, Mincher B, Modolo G, Galán MH, Olson L, McDowell R (2016) Performance of an i-SANEX system based on a water-soluble BTP under continuous irradiation in a γ-radiolysis test loop. Ind Eng Chem Res 55:10427–10435

    Article  CAS  Google Scholar 

  10. Zhengshui H, Ying P, Wanwu M, Xun F (1995) Purification of organophosphorus acid extractants. Solvent Extr Ion Exch 13:965–976

    Article  Google Scholar 

  11. Sehested K (1970) The Fricke Dosimeter. In: Holm NW, Berry RJ (eds) Manual on radiation dosimetry. Marcel Dekker, New York, pp 313–317

    Google Scholar 

  12. Ajji Z (2006) Usability of aqueous solutions of methyl red as high-dose dosimeter for gamma radiation. Radiat Meas 41:438–442

    Article  CAS  Google Scholar 

  13. Pearson J, Jan O, Miller GE, Nilsson M (2012) Studies of high linear energy transfer dosimetry by 10B(n, α)7Li reaction in aqueous and organic solvents. J Radioanal Nucl Chem 292:719–727

    Article  CAS  Google Scholar 

  14. Zarzana CA, Peterman DR, Groenewold GS, Olson LG, McDowell RG, Bauer WF, Morgan SJ (2015) Investigation of the impacts of gamma radiolysis on an advanced TALSPEAK separation. Sep Sci Technol 50:2836–2843

    CAS  Google Scholar 

  15. Roscioli-Johnson KM, Zarzana CA, Groenewold GS, Mincher BJ, Wilden A, Schmidt H, Modolo G, Santiago-Schübel B (2016) A study of the γ-radiolysis of N,N-didodecyl-N′,N′-dioctyldiglycolamide using UHPLC-ESI-MS analysis. Solvent Extr Ion Exch 34:439–453

    Article  CAS  Google Scholar 

  16. Zarzana CA, Groenewold GS, Mincher BJ, Mezyk SP, Wilden A, Schmidt H, Modolo G, Wishart JF, Cook AR (2015) A comparison of the γ-radiolysis of TODGA and T(EH)DG using UHPLC-ESI-MS analysis. Solvent Extr Ion Exch 33:431–447

    Article  CAS  Google Scholar 

  17. Fermvik A, Ekberg C, Englund S, Foreman MRSJ, Modolo G, Retegan T, Skarnemark G (2009) Influence of dose rate on the radiolytic stability of a BTBP solvent for actinide(III)/lanthanide(III) separation. Radiochim Acta 97:319–324

    Article  CAS  Google Scholar 

  18. Holfeltz VE, Peterman DR, Campbell EL, Standaert RF, Paulenovea A, Levitskaia TG, Lumetta GJ (2018) Effect of HEH[EHP] impurities on the ALSEP solvent extraction process. Solvent Extr Ion Exch 36:22–40

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the U.S. Department of Energy, Office of Nuclear Energy, through the Fuel Cycle Research and Development Program. Idaho National Laboratory is operated by Battelle Energy Alliance under DOE Idaho Operations Office Contract DE-AC07-05ID14517.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean R. Peterman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peterman, D.R., Zarzana, C.A., Tillotson, R.D. et al. Evaluation of the impacts of gamma radiolysis on an ALSEP process solvent. J Radioanal Nucl Chem 316, 855–860 (2018). https://doi.org/10.1007/s10967-018-5737-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5737-0

Keywords

Navigation