Skip to main content
Log in

The effects of radiation chemistry on radiochemistry: when unpaired electrons defy great expectations

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In liquid/liquid extraction fuel cycle scenarios, successful metal partitioning depends upon maintaining predictable ligand concentrations and metal valence states in a non-equilibrium system perturbed by the constant input of energy. Energetic particles from nuclide decay interact with solution to yield ions and radicals that react with solutes. These reactions have the potential to interfere with the expected separations chemistry. This paper describes example reactions of the main transient products of aqueous and organic diluents with ligands or metal ions. These reactions tend to decrease ligand concentrations, generate unwanted products, and change metal valence states. It discusses the effects of these reactions on the desired separations, using examples mainly from work conducted at the Idaho National Laboratory Center for Radiation Chemistry Research (CR2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Spinks JWT, Woods RJ (eds) (1990) An introduction to radiation chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  2. Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in aqueous solution. J Phys Chem Ref Data 17:513–886

    Article  CAS  Google Scholar 

  3. Katsumura Y, Jiang PY, Nagaishi R, Oishi T, Ishigura K, Yoshida Y (1991) Pulse-radiolysis study of aqueous nitric-acid solutions—formation mechanism, yield, and reactivity of NO3 radical. J Phys Chem 95:4435–4439

    Article  CAS  Google Scholar 

  4. Mezyk SP, Horne GP, Mincher BJ, Zalupski PR, Cook AR, Wishart JF (2016) The chemistry of separations ligand degradation by organic radical cations. Procedia Chem 21:61–65

    Article  Google Scholar 

  5. Elliot AJ (1989) A pulse radiolysis study of the temperature dependence of reactions involving H, OH and (e (aq) ) in aqueous solution. Radiat Phys Chem 34:753–758

    CAS  Google Scholar 

  6. Gordon S, Hart EJ, Thomas JK (1964) The ultraviolet spectra of transients produced in the radiolysis of aqueous solutions. J Phys Chem 68:1262–1264

    Article  CAS  Google Scholar 

  7. Isaacson RE, Judson BF (1964) Np recovery and purification at Hanford. I&EC Process Des Dev. 3:296–301

    Article  CAS  Google Scholar 

  8. Siddall TH, Dukes EK (1959) Kinetics of HNO2 catalyzed oxidation of Np(V) by aqueous solutions of nitric acid. J Am Chem Soc 81:790–794

    Article  CAS  Google Scholar 

  9. Gogolev AV, Shilov VP, Fedoseev AM, Pikaev AK (1986) A pulse radiolysis study of the reactivity of neptunoyl ions relative to inorganic free-radicals. Bull Acad Sci USSR Div Chem Sci 35:422–424

    Article  Google Scholar 

  10. Mincher BJ, Precek M, Mezyk SP, Elias G, Martin LR, Paulenova A (2013) The redox chemistry of neptunium in γ-irradiated aqueous nitric acid. Radiochim Acta 101:259–265

    Article  CAS  Google Scholar 

  11. Mincher BJ, Precek M, Mezyk SP, Martin LR, Paulenova A (2013) The role of oxidizing radicals in neptunium speciation in γ-irradiated nitric acid. J Radioanal Nucl Chem 296:27–30

    Article  CAS  Google Scholar 

  12. Horne GP, Grimes TS, Mincher BJ, Mezyk SP (2016) Reevaluation of neptunium-nitric acid radiation chemistry by multiscale modeling. J Phys Chem B 120:12643–12649

    Article  CAS  Google Scholar 

  13. Mincher BJ, Precek M, Paulenova A (2016) The redox chemistry of neptunium in γ-irradiated aqueous nitric acid in the presence of an organic phase. J Radioanal Nucl Chem 308:1005–1009

    Article  CAS  Google Scholar 

  14. Grimes TS, Horne GP, Dares CJ, Pimblott SM, Mezyk SP, Mincher BJ (2017) Kinetics of the autoreduction of hexavalent americium in aqueous nitric acid. Inorg Chem 56:8295–8301

    Article  CAS  Google Scholar 

  15. Mincher BJ, Curry RD (2000) Considerations for choice of a kinetic fig. of merit in process radiation chemistry for waste treatment. Appl Radiat Isot 52:189–193

    Article  CAS  Google Scholar 

  16. Whitman K, Lyons S, Miller R, Nett D, Treas P, Zante A, Fessenden RW, Thomas MD, Wang Y (1995) In: IEEE Proceedings Particle Accelerator Conference, Dallas

  17. Cole SK, Cooper WJ, Fox RV, Gardinali PR, Mezyk SP, Mincher BJ, O’Shea KE (2007) Free radical chemistry of disinfection byproducts. 2. Rate constants and degradation mechanisms of trichloromethane (Chloropicrin). Environ Sci Technol 41:863–869

    Article  CAS  Google Scholar 

  18. Mincher BJ, Mezyk SP, Cooper WJ, Cole SK, Fox RV, Gardinali PR (2010) Free-radical chemistry of disinfection byproducts. 3. Degradation mechanisms of chloronitromethane, bromonitromethane, and dichloronitromethane. J Phys Chem 114:117–125

    Article  CAS  Google Scholar 

  19. Gasparini GM, Grossi G (1986) Long chain disubstituted aliphatic amines as extracting agents in industrial applications of solvent extraction. Solv Extr Ion Exch 4:1233–1271

    Article  CAS  Google Scholar 

  20. Sasaki Y, Sugo Y, Suzuki S, Tachimori S (2001) The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3-n-dodecane system. Solv Ext Ion Exch 19:91–103

    Article  CAS  Google Scholar 

  21. Zarzana CA, Groenewold GS, Mincher BJ, Mezyk SP, Wilden A, Schmidt H, Modolo G, Wishart JF, Cook AR (2015) A comparison of the γ-radiolysis of TODGA and T(EH)DGA using UHPLC-ESI-MS analysis. Solv Extr Ion Exch 33:431–447

    Article  CAS  Google Scholar 

  22. Drader J, Saint-Louis G, Muller JM, Charbonnel M-C, Guilbard P, Berthon L, Roscioli-Johnson KM, Zarzana CA, Rae C, Groenewold GS, Mincher BJ, Mezyk SP, McCann K, Braley J (2017) Solv Extr Ion Exch 35:480–495

    Article  CAS  Google Scholar 

  23. Draye M, Chomel R, Doutreluingne P, Guy A, Foos J, Lemaire M (1993) Radiolytic products study of dicyclohexano-18-crown-6, a selective extractant for nuclear fuel processing. J Radioanal Nucl Chem Lett 175:55–62

    Article  CAS  Google Scholar 

  24. Cuillerdier C, Musikas C, Hoel O, Nigond L, Vitart X (1991) Malonamides as new extractants for nuclear waste solutions. Sep Sci Technol 26:1229–1244

    Article  CAS  Google Scholar 

  25. Mezyk SP, Mincher BJ, Dhiman SB, Layne B, Wishart JF (2016) The role of organic solvent radical cations in separations ligand degradation. J Radioanal Nucl Chem 307:2445–2449

    Article  CAS  Google Scholar 

  26. Mincher BJ, Mezyk SP, Elias G, Groenewold GS, Riddle CL, Olson LG (2013) The radiation chemistry of CMPO: Part 1. Gamma radiolysis. Solv Extr Ion Exch 31:715–730

    Article  CAS  Google Scholar 

  27. Schmidt H, Wilden A, Modolo G, Bosbach D, Santiago-Schübel B, Hupert M, Švehla J, Grüner B, Ekberg C (2016) Gamma radiolysis of the highly selective ligands CyMe4BTBP and CyMe4BTPhen: qualitative and quantitative investigation of radiolysis products. Procedia Chem 21:32–37

    Article  Google Scholar 

  28. Peterman D, Geist A, Mincher B, Modolo G, Galán MH, Olson L, McDowell R (2016) Performance of an i-SANEX system based on a water-soluble BTP under continuous irradiation in a γ-radiolysis test loop. Ind Eng Chem Res 55:10427–10435

    Article  CAS  Google Scholar 

  29. Wilden A, Modolo G, Hupert M, Santiago-Schübel B, Löfström-Engdahl E, Halleröd J, Ekberg C, Mincher BJ, Mezyk SP (2016) Gamma-radiolytic stability of solvents containing C5-BPP (2,6-Bis(5-(2,2-dimethylpropyl)-1H-pyrazol-3-yl)pyridine) for actinide(III)/lanthanide(III) separation. Solv Extr Ion Exch 34:1–12

    Article  CAS  Google Scholar 

  30. Galán H, Zarzana CA, Wilden A, Núñez A, Schmidt H, Egberink RJM, Leoncini A, Cobos J, Verboom W, Modolo G, Groenewold GS, Mincher BJ (2015) Gamma-radiolytic stability of new methylated TODGA derivatives for minor actinide recycling. Dalton Trans 44:18049–18056

    Article  Google Scholar 

  31. Roscioli-Johnson KM, Zarzana CA, Groenewold GS, Mincher BJ, Wilden A, Schmidt H, Modolo G (2016) A study of the γ-radiolysis of N, N-di-doecyl-N′, N′-di-octyl digycolamide (D3DODGA) using UHPLC-ESI-MS analysis. Solv Extr Ion Exch 34:439–453

    Article  CAS  Google Scholar 

  32. Chiarizia R, Horwitz EP (1986) Hydrolytic and radiolytic degradation of octyl(phenyl)-N, N-diisobutylcarbamoylmethyl phosphine oxide and related compounds. Solv Extr Ion Exch 4:677–723

    Article  CAS  Google Scholar 

  33. Mincher BJ, Modolo G, Mezyk SP (2009) Review article: the effects of radiation chemistry on solvent extraction: 1. Conditions in acidic solution and a review of TBP radiolysis. Solv Extr Ion Exch 27:1–25

    Article  CAS  Google Scholar 

  34. Mincher BJ, Modolo G, Mezyk SP (2009) The effects of radiation chemistry on solvent extraction: 2. A review of fission product extraction. Solv Extr Ion Exch 27:331–353

    Article  CAS  Google Scholar 

  35. Mincher BJ, Modolo G, Mezyk SP (2009) The effects of radiation chemistry on solvent extraction: 3. A review of actinide and lanthanide extraction. Solv Extr Ion Exch 27:579–606

    Article  CAS  Google Scholar 

  36. Mincher BJ, Modolo G, Mezyk SP (2010) The effects of radiation chemistry on solvent extraction: 4. Separation of the minor actinides and considerations for radiation-resistant solvent systems. Solv Extr Ion Exch 28:415–436

    Article  CAS  Google Scholar 

  37. Berthon L, Charbonnel M-C (2010) In: Moyer BA (ed) Ion exchange and solvent extraction: a series of advances. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgements

Funding was provided by the United States Department of Energy Assistant Secretary for Nuclear Energy, Fuel Cycle Research and Development Radiation Chemistry Program, DOE-Idaho Operations Office Contract DE-AC07-05ID14517. The collaborations with California State University at Long Beach, USA; Brookhaven National Laboratory, USA; Oregon State University, USA; University of California, Irvine, USA; Forschungszentrum Jülich, Germany; Commissariat á l’Énergie Atomique, Marcoule, France; Chalmers Institute of Technology, Sweden; Karlsruhe Institute of Technology, Germany; Centro de Investigaciones Energéticas, Medioambientales y Technológicas, Spain; University of Notre Dame Radiation Laboratory, USA, and many colleagues at the Idaho National Laboratory, USA were essential to the successful completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce J. Mincher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mincher, B.J. The effects of radiation chemistry on radiochemistry: when unpaired electrons defy great expectations. J Radioanal Nucl Chem 316, 799–804 (2018). https://doi.org/10.1007/s10967-018-5728-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5728-1

Keywords

Navigation