Skip to main content
Log in

Uranium-bearing phases in Hanford nuclear waste

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Uranium is the most prevalent radioactive element in the 210 million liters of nuclear waste at the Hanford Site but the uranium speciation has not been determined in the waste tanks. The present study determined the common uranium-bearing solid phases in Hanford Site tank waste with X-ray diffraction and scanning electron microscopy. Sodium uranates were the most common species but uranium was also routinely co-precipitated with iron oxides. Na–U–O–P-bearing species were occasionally present. Two morphologies of sodium uranates were observed, long acicular and small spherical agglomerates up to 50 μm in size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hill, RCP, Reynolds JG, Rutland PL (2011) A comparison of Hanford and Savannah River Site high-level wastes. In: Proceedings of the 13th international high-level waste management conference. American Nuclear Society, Illinois, USA, pp 114–117

  2. Hobbs DT, Karraker DG (1996) Recent results on the solubility of uranium and plutonium in Savannah River Waste supernate. Nucl Technol 114:318–324

    Article  CAS  Google Scholar 

  3. King WD, Wilmarth WR, Hobbs DT, Edwards TB (2008) Recent studies of uranium and plutonium chemistry in alkaline radioactive waste solutions. J Alloys Compd. 458:158–160

    Article  CAS  Google Scholar 

  4. Grenthe I, Varfeldt J (1969) A potentiometric study of fluoride complexes of uranium(IV) and uranium(VI) using the U(VI)/U(IV) redox couple. Acta Chem Scand 23:988–998

    Article  CAS  Google Scholar 

  5. Grenthe I, Lagerman B (1991) Studies on metal carbonate equilibria. 22. A coulometric study of mixed uranium(VI)-carbonate system, the composition of the mixed hydroxide carbonate species. Acta Chem Scand 45:122–128

    Article  CAS  Google Scholar 

  6. Sandino A, Bruno J (1992) The solubility of (UO2)3(PO4)*4H2O(s) and the formation of U(VI) phosphate complexes: their influence in uranium speciation in natural waters. Geochim Cosmochim Acta 56:4135–4145

    Article  CAS  Google Scholar 

  7. Colas W, Grive G, Rojo I (2013) Complexation of uranium(VI) by gluconate in alkaline solutions. J Solut Chem. 42:1454–1557

    Google Scholar 

  8. Zhang L, Su J, Yang S, Guo Z, Jia Y, Chen N, Zhou J, Zhang S, Wang S, Li J, Li J, Wu G, Wang J-Q (2016) Extended x-ray absorption fine structure and density functional theory studies on the complexation mechanism of amidoximate ligands to uranyl carbonate. Ind Eng Chem Res 55:224–4230

    Google Scholar 

  9. Wang Z, Zachara JM, Uantasee W, Gassman P, Liu P (2004) Cryogenic laser induced fluorescence characterization of U(VI) in Hanford vadose zone pore waters. Environ Sci Technol 38:5591–5597

    Article  CAS  Google Scholar 

  10. Blake CA, Coleman CF, Brown KB, Hill DG, Lowrie RS, Schmitt JM (1956) Studies in the carbonate-uranium system. J Am Chem Soc 78:5978–5983

    Article  CAS  Google Scholar 

  11. Rapko BM, Lumetta GJ (2000) Status Report on phase identification in Hanford tank sludges. PNNL-13394, Pacific Northwest National Laboratory, Richland, WA

  12. Finch RJ, Ewing RC (1997) Clarkeite: new chemical and structural data. Am Miner 82:607–619

    Article  CAS  Google Scholar 

  13. Maly J, Vesley V (1958) A contribution to sodium polyuranate chemistry. J Inorg Nucl Chem 7:119–128

    Article  CAS  Google Scholar 

  14. Reynolds JG, Huber HJ, Cooke GA, Pestovich JA (2014) Solid-phase speciation of zirconium and fluoride in alkaline zircaloy cladding waste at Hanford. J Hazard Mater 278:203–210

    Article  CAS  Google Scholar 

  15. Reynolds JG, Page JS, Cooke GA, Pestovich JA (2015) A scanning electron microscopy study of bismuth and phosphate phases in bismuth phosphate process waste at Hanford. J Radioanal Nucl Chem 304:1253–1259

    Article  CAS  Google Scholar 

  16. Reynolds JG, Cooke GA, McCoskey JK, Callaway WS (2016) Discovery of plutonium-bismuth and plutonium-bismuth-phosphorus containing phases in a Hanford waste tank. J Radioanal Nucl Chem 309:973–981

    Article  CAS  Google Scholar 

  17. ASTM (2011) Standard guide for sampling radioactive tank waste, Standard C1751-11. ASTM International, West Conshohocken

    Google Scholar 

  18. Reynolds JG, Cooke GA, Herting DL, Warrant RW (2013) Salt mineralogy of Hanford high-level waste staged for treatment. Ind Eng Chem Res 52:9741–9751

    Article  CAS  Google Scholar 

  19. Reynolds JG, Cooke GA, Herting DL, Warrant RW (2012) Evidence for dawsonite in Hanford high-level waste tanks. J Hazard Mater 209–210:186–192

    Article  Google Scholar 

  20. Page JS, Reynolds JG, Ely TM, Cooke GA (2018) Development of a carbonate crust on alkaline nuclear waste sludge at Hanford. J Hazard Mater 342:375–382

    Article  CAS  Google Scholar 

  21. Krupka KM, Schaef SM, Arey BW, Heald SM, Deutsch WJ, Lindberg MJ, Cantrell KJ (2006) Residual waste from Hanford tanks 241-C-203 and 241-C-204. 1. Solids characterization. Environ Sci Technol 40:3749–3754

    Article  CAS  Google Scholar 

  22. Snow LA, Lumetta GJ, Fiskum S, Peterson RA (2008) Boehmite actual waste dissolution studies. Sep Sci Technol 43:2900–2916

    Article  CAS  Google Scholar 

  23. Edwards MK, Fiskum SK, Shimskey RW, Peterson RA (2010) Leaching characteristics of Hanford ferrocyanide wastes. Ind Eng Chem Res 49:1792–1798

    Article  CAS  Google Scholar 

  24. Cordfunke EHP, Loopstra BO (1971) Sodium uranates: preparation and thermochemical properties. J Inorg Nucl Chem 33:2427–2436

    Article  CAS  Google Scholar 

  25. Smith AL, Raison PE, Martel L, Charpentier T, Farnan I, Prieur D, Hennig C, Scheinost AC, Konings RJM, Cheetham AK (2014) A 23Na magic angle spinning nuclear magnetic resonance, XANES and high-temperature X-ray diffraction study of NaUO3, Na4UO5, and Na2U2O7. Inorg Chem 53:375–382

    Article  CAS  Google Scholar 

  26. Gruner JW (1954) The chemical formula of clarkeite. Am Miner 39:836–838

    CAS  Google Scholar 

  27. Diaz Arocas P, Grambow B (1998) Solid-liquid phase equilibria of U(VI) in NaCl solutions. Geochim Cosmochim Acta 62:245–263

    Article  Google Scholar 

  28. Burns PC, Deely KM (2002) A topologically novel sheet of uranyl pentagonal bipyramids in the structure of Na[(UO2)4O2(OH)5](H2O)2. Can Miner 40:579–1586

    Google Scholar 

  29. Chernorukov NG, Nipruk OV, Kostrova EL (2016) Synthesis and study of sodium uranate Na2U2O7*6H2O and of products of its dehydration and thermal decomposition. Radiochemistry 58:124–127

    Article  CAS  Google Scholar 

  30. Griffiths TR, Volkovich VA (1999) A review of the high temperature oxidation of uranium oxides in molten salts and in the solid state to form alkali metal uranates, and their composition and properties. J Nucl Mater 274:229–251

    Article  CAS  Google Scholar 

  31. Giammar DE, Hering JG (2004) Influence of dissolved sodium and cesium on uranyl oxide hydrate solubility. Environ Sci Technol 38:171–179

    Article  CAS  Google Scholar 

  32. Burns PC, Hughes K (2003) Studtite [(UO2)(O2)(H2O)2](H2O)2: the first structure of a peroxide mineral. Am Miner 88:1165–1168

    Article  CAS  Google Scholar 

  33. Bryan SA, Pederson LR, King CM (2000) Thermal and radiolytic gas generation in Hanford high-level waste. In: Proceedings of Waste Management 2000. Waste Management Symposia Inc., Tucson, AZ

  34. Fedoseev AM, Shilov VP, Charushnikova IA, Yusov AB, Budantseva NA, Delegard CH (2002) Selective recovery of chromium from precipitates containing d elements and actinides: II. Effect of H2O2. Radiochemistry 44:355–360

    Article  CAS  Google Scholar 

  35. Garnov AY, Gogolev AV, Shilov VP, Astafurova LN, Krot NN (2002) Catalytic decomposition of organic anions in alkaline radioactive waste: 1. EDTA oxidation. Radiochemistry 44:437–444

    Article  Google Scholar 

  36. Gogolev AV, Shilov VP, Garnov AY, Anan’ev AV (2002) Catalytic decomposition of organic anions in alkaline radioactive waste: II. Oxidation of N-(2-Hydroxyethyl)Ethylenediaminetriacetate. Radiochemistry 48:31–35

    Article  Google Scholar 

  37. Fondeur FF, Hang T, Walker DD, Wilmarth WR, Fink SD (2003) The effect of carbonate, oxalate, and peroxide on the cesium loading of Ionsiv® Ie-910 and Ie-911. Sep Sci Technol 38:3175–3188

    Article  CAS  Google Scholar 

  38. Kim KW, Kim YH, Lee SY, Lee SW, Joe KS, Lee EH, Kim JS, Song K, Song KC (2009) Precipitation characteristics of uranyl ions at different pHs depending on the presence of carbonate ions and hydrogen peroxide. Environ Sci Technol 43:2355–2361

    Article  CAS  Google Scholar 

  39. Hobbs DT (1999) Precipitations of uranium and plutonium from alkaline salt solutions. Nucl Technol 128:103–112

    Article  CAS  Google Scholar 

  40. Fanghanel T, Neck V (2002) Aquatic chemistry and solubility phenomena of actinide oxides/hydroxides. Pure Appl Chem 74:1895–1907

    Article  CAS  Google Scholar 

  41. Yamamura T, Kitamura A, Fukui A, Nichikawa S, Yamamoto T, Moriyama H (1998) Solubility of U(VI) in highly basic solutions. Radiochim Acta 83:139–146

    Article  CAS  Google Scholar 

  42. Bots P, Morris K, Hibberd R, Law GTW, Mosselmans JFW, Brown AP, Doutch J, Smith AJ, Shaw S (2014) Formation of stable uranium(VI) colloidal nanoparticles in conditions relevant to radioactive waste disposal. Langmuir 30:14396–14405

    Article  CAS  Google Scholar 

  43. Manna S, Thakkar UR, Satpati SK, Roy SB, Joshi JB, Chakravartty JK (2016) Study of crystal growth and effect of temperature and mixing on properties of sodium diuranate. Prog Nucl Energy 91:132–139

    Article  CAS  Google Scholar 

  44. Schindler M, Mutter A, Hawthorne FC, Putnis A (2004) Prediction of crystal morphology of complex uranyl-sheet minerals. I. Theory. Can Miner 42:1629–1649

    Article  CAS  Google Scholar 

  45. Jennings BR, Parslow K (1988) Particle size measurement: the equivalent spherical diameter. Proc R Soc Lond A419:137–149

    Article  Google Scholar 

  46. Duff MC, Amrhein C (1996) Uranium(VI) adsorption on goethite and soil in carbonate solutions. Soil Sci Soc Am J 60:1393–1400

    Article  CAS  Google Scholar 

  47. Duff MC, Coughlin JU, Hunter DB (2002) Uranium co-precipitation with iron oxide minerals. Geochim Cosmochim Acta 66:3533–3547

    Article  CAS  Google Scholar 

  48. Qian L, Ma M, Cheng D (2015) Adsorption and desorption of uranium on nano goethite and nano alumina. J Radioanal Nucl Chem 303:161–170

    Article  CAS  Google Scholar 

  49. Fox PM, Davis JA, Zachara JM (2006) The effect of calcium on aqueous uranium(VI) Speciation and adsorption to ferrihydrite and quartz. Geochim Cosmochim Acta 70:1379–1387

    Article  CAS  Google Scholar 

  50. Barger JR, Reitmeyer R, Davis JA (1999) Spectroscopic confirmation of uranium(VI)-carbonato adsorption complexes on hematite. Environ Sci Technol 33:2481–2484

    Article  Google Scholar 

  51. Arai Y, Fuller CC (2012) Effects of sulfate ligand on uranyl carbonato surface species on ferrihydrite surfaces. J Colloid Int Sci. 365:268–274

    Article  CAS  Google Scholar 

  52. Waite TD, Davis JA, Payne TE, Waychunas GA, Xu N (1994) Uranium(VI) adsorption to ferrihydrite: application of a surface complexation model. Geochim Cosmochim Acta 58:5466–5478

    Article  Google Scholar 

  53. Marshall TA, Morris K, Law GTW, Livens FR, Mosselmans JFW, Bots P, Shaw S (2014) Incorporation of uranium into hematite during crystallization from ferrihydrite. Environ Sci Technol 48:3724–3731

    Article  CAS  Google Scholar 

  54. Nico PS, Stewart BD, Fendorf S (2009) Incorporation of oxidized uranium into Fe (hydr)oxides during Fe(II) catalyzed remineralization. Environ Sci Technol 43:7391–7396

    Article  CAS  Google Scholar 

  55. Kerisit S, Felmy AR, Ilton ES (2011) Atomistic simulations of uranium incorporated into iron (hydr)oxides. Environ Sci Technol 45:2770–2776

    Article  CAS  Google Scholar 

  56. Ilton ES, Lezama Pacheco JS, Barger JR, Shi Z, Liu J, Kovarik L, Engelhard MH, Felmy AR (2012) Reduction of U(VI) incorporated in the structure of hematite. Environ Sci Technol 46:170–176

    Google Scholar 

  57. Stewart BD, Nico PS, Fendorf S (2009) Stability of uranium incorporated into Fe (hydr)oxides under fluctuating redox conditions. Environ Sci Technol 43:4922–4927

    Article  CAS  Google Scholar 

  58. Zheng Z, Wan J, Song Z, Tokunaga TK (2006) Sodium meta-autunite colloids: synthesis, characterization, and stability. Colloid Surf 274:48–55

    Article  CAS  Google Scholar 

  59. Wellman DM, Catalano JG, Icenhower JP, Gamerdinger AP (2005) Synthesis and characterization of sodium meta-autunite Na[UO2PO4]*3H2O. Radiochim Acta 93:393–399

    Article  CAS  Google Scholar 

  60. Colella M, Lumpkin GR, Hang Z, Buck EC, Smith KL (2005) Determination of the uranium valences state in the brannerite structure using EELS, XPS, and EDX. Phys Chem Miner 32:52–64

    Article  CAS  Google Scholar 

  61. Sweet LE, Blake TA, Henager CH Jr, Hu S, Johnson TJ, Meier DE, Peper SM, Schwantes JM (2013) Investigation of the polymorphs and hydrolysis of uranium trioxide. J Radioanal Nucl Chem 296:105–110

    Article  CAS  Google Scholar 

  62. Catalano JG, Heald SM, Zachara JM, Brown GE (2004) Spectroscopic and diffraction study of uranium speciation in the contaminated vadoze zone sediments from the Hanford Site, Washington State. Environ Sci Technol 38:2822–2828

    Article  CAS  Google Scholar 

  63. McKinley JP, Zachara JM, Liu C, Healt JC, Prenitzer BI, Kempshall BW (2006) Microscale controls on the fate of contaminant uranium in the vadose zone, Hanford Site, Washington. Geochim Cosmochim Acta 70:1873–1887

    Article  CAS  Google Scholar 

  64. Um W, Wang Z, Serne RJ, Williams BD, Brown CF, Dodge CJ, Francis AJ (2009) Uranium Phases in contaminated sediments below Hanford’s U tank farm. Environ Sci Technol 43:4280–4286

    Article  CAS  Google Scholar 

  65. Um W, Icenhower JP, Brown CF, Serne RJ, Wang Z, Dodge CJ, Francis AJ (2010) Characterization of uranium-contaminated sediments from beneath a nuclear waste storage tank from Hanford, Washington: implications for contaminant transport and fate. Geochim Cosmochim Acta 74:1363–1380

    Article  CAS  Google Scholar 

  66. Wan J, Kim Y, Tokunaga TK, Wang Z, Dixit S, Steefel CI, Saiz E, Kunz M, Tamura N (2009) Spatially resolved U(VI) partitioning and speciation: implications for plume scale and behavior of contaminated U in the Hanford vadose zone. Environ Sci Technol 43:2247–2253

    Article  CAS  Google Scholar 

  67. Wang Z, Zachara JM, Gassman P, Liu C, Qafoku O (2005) Fluorescence spectroscopy of U(VI)-silicates and U(VI)-contaminated Hanford sediment. Geochim Cosmochim Acta 69:1391–1403

    Article  CAS  Google Scholar 

  68. Reynolds JG, Cooke GA, Huber HJ (2013) Degradation of dome cutting minerals in Hanford waste. In: Proceedings of Waste Management 2013, Waste Management Symposia Inc., Tucson, AZ

  69. Addai-Mensah J, Li J, Zbik M, Wilmarth WR (2005) Uranium sorption on solid aluminosilicate phases under caustic conditions. Sep Sci Technol 40:267–279

    Article  CAS  Google Scholar 

  70. Oji LN, Martin KB, Stallings ME, Duff MC (2006) Conditions conducive to forming crystalline uranyl silicates in high caustic nuclear waste evaporators. Nucl Technol 154:237–246

    Article  CAS  Google Scholar 

  71. Wilmarth WR, Mills JT, Dukes Vh, Sullivan RC (2006) Effects of in-tank precipitation of sodium aluminosilicate on uranium chemistry. Sep Sci Technol 41:2325–2340

    Article  CAS  Google Scholar 

  72. Maiti T, Kaye J (1995) Measurement of total alpha-activity of neptunium, plutonium and americium in simulated Hanford waste by iron hydroxide precipitation and 2-heptanone solvent extraction. J Radional Nucl Chem. 190:175–180

    Article  CAS  Google Scholar 

  73. Bessonov AA, Charushnikova IA, Shilov VP, Krott NN (2003) Coprecipitation of transuranium elements from alkaline solutions by the method of arising agents: XXI. Coprecipitation of Pu(VI, V) and Np(VI, V) with sodium uranate. Radiochemistry 45:66–69

    Google Scholar 

  74. Ondrus P, Skala R, Veselovsky F, Sejkora J, Vitti C (2003) Cejkaite, the triclinic polymorph of Na4(UO2)(CO3)3—A new mineral from Jachymov, Czech Republic. Am Miner 88:686–693

    Article  CAS  Google Scholar 

  75. Holmesmith B (2015) Technical basis for the chemistry control program. RPP-7795, Rev. 13. Washington River Protection Solutions, LLC., Richland, WA

  76. Altmaier M, Yalcintas E, Gaona X, Neck V, Muller R, Schlieker M, Fanghanel T (2017) Solubility of U(VI) in chloride solutions. I. The stable oxides/hydroxides in NaCl systems, solubility products, hydrolysis constants and SIT coefficients. J Chem Thermodyn 114:2–13

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob G. Reynolds.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6696 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reynolds, J.G., Cooke, G.A., Page, J.S. et al. Uranium-bearing phases in Hanford nuclear waste. J Radioanal Nucl Chem 316, 289–299 (2018). https://doi.org/10.1007/s10967-018-5724-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5724-5

Keywords

Navigation