Skip to main content
Log in

Chemometric analyses of XANES data collected on 99Tc bearing silicate glasses

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A challenge to the incorporation of 99Tc into a glass matrix is that 99Tc is volatile at vitrification temperatures. Understanding how this volatilization occurs requires knowledge of the multiple chemistries which Tc may take during vitrification. This paper presents an overview of how the localized chemistry of 99Tc has been determined in a series of 99Tc-bearing glasses by chemometric analyses of X-ray absorption near edge spectra (XANES). Linear combination fitting and principal component analysis of the glasses’ XANES spectra suggested that the glasses contained 3–4 chemically distinct Tc environments. The identity of the detected chemistries were pertechnetates, (Tc(VII) as isolated oxyanions, or locally coordinated by Na or K), or isolated Tc(IV) species. The linear combination fitting distribution of local Tc sites agrees with reanalyzed Raman spectra, suggesting that as targeted KTcO4 incorporation increases, a significant ion exchange takes place, and speciation in the glass changes to favor Tc(VII) formation, specifically NaTcO4. Based on the statistical suggestion that not all Tc environments are accounted by the available standards, a new mechanism for the behavior of Tc during vitrification is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Darab JG, Smith PA (1996) Chemistry of technetium and rhenium species during low-level radioactive waste vitrification. Chem Mater 8(5):1004–1021. https://doi.org/10.1021/cm950418+

    Article  CAS  Google Scholar 

  2. Gassman PL, McCloy JS, Soderquist CZ, Schweiger MJ (2014) Raman analysis of perrhenate and pertechnetate in alkali salts and borosilicate glasses. J Raman Spectrosc 45(1):139–147. https://doi.org/10.1002/jrs.4427

    Article  CAS  Google Scholar 

  3. Kim DS, Soderquist CZ, Icenhower JP, McGrail BP, Scheele RD, McNamara BK, Bagaasen LM, Schweiger MJ, Crum JV, Yeager JD, Matyas J, Darnell LP, Schaef HT, Owen AT, Kozelisky AE, Snow LA, Steele MJ (2005) Tc reductant chemistry and crucible melting studies with simulated Hanford low-activity waste. Pacific Northwest National Laboratory, Richland

    Book  Google Scholar 

  4. Muller IS, McKeown DA, Pegg IL (2014) Structural behavior of Tc and I ions in nuclear waste glass. Procedia Mater Sci 7:53–59. https://doi.org/10.1016/j.mspro.2014.10.008

    Article  CAS  Google Scholar 

  5. Muller IS, Viragh C, Gan H, Matlack KS, Pegg IL (2009) Iron Mössbauer redox and relation to technetium retention during vitrification. Hyperfine Interact 191(1–3):347–354. http://link.springer.com/chapter/10.1007%2F978-3-642-01370-6_45

    Google Scholar 

  6. Shuh DK, Lukens W, Burns CJ (2003) Research program to investigate the fundamental chemistry of technetium: final report. Lawrence Berkeley National Laboratory, Berkeley

    Book  Google Scholar 

  7. McKeown DA, Buechele AC, Lukens WW, Shuh DK, Pegg IL (2007) Tc and Re behavior in borosilicate waste glass vapor hydration tests. Environ Sci Technol 41:431–436. https://doi.org/10.1021/es061306u

    Article  CAS  Google Scholar 

  8. McKeown DA, Buechele AC, Lukens WW, Shuh DK, Pegg IL (2007) Raman studies of technetium in borosilicate waste glass. Radiochim Acta 95(5):275–280. https://doi.org/10.1524/ract.2007.95.5.275

    Article  CAS  Google Scholar 

  9. Icenhower JP, Qafoku NP, Zachara JM, Martin WJ (2010) The biogeochemistry of technetium: a review of the behavior of an artificial element in the natural environment. Am J Sci 310(8):721–752. https://doi.org/10.2475/08.2010.02

    Article  CAS  Google Scholar 

  10. Buechele AC, Lukens WW, Shuh DK, McKeown DA, Muller IS, Pegg IL (2010) Comparison of the behavior of technetium and rhenium in low activity waste glass formulations subjected to the vapor hydration test. Microsc Microanal 16:1628–1629. https://doi.org/10.1017/s143192761006232x

    Article  CAS  Google Scholar 

  11. Buechele AC, McKeown DA, Lukens WW, Shuh DK, Pegg IL (2012) Tc and Re behavior in borosilicate waste glass vapor hydration tests II. J Nucl Mater 429(1–3):159–165. https://doi.org/10.1016/j.jnucmat.2012.05.032

    Article  CAS  Google Scholar 

  12. Antonini M, Merlini AE, Thornley RF (1985) EXAFS structures of technetium in glasses prepared under different redox conditions. J Non-Cryst Solids 71(1–3):219–225. https://doi.org/10.1016/0022-3093(85)90290-X

    Article  CAS  Google Scholar 

  13. Soderquist CZ, Schweiger MJ, Kim D-S, Lukens WW, McCloy JS (2014) Redox-dependent solubility of technetium in low activity waste glass. J Nucl Mater 449(1–3):173–180. https://doi.org/10.1016/j.jnucmat.2014.03.008

    Article  CAS  Google Scholar 

  14. Lukens WW, Shuh DK, Muller IS, McKeon DA (2004) X-ray absorption fine structure studies of speciation of technetium in borosilicate glasses. In: Materials Research Society Symposia Proceedings, vol 802, pp. DD3.3.1–DD3.3.6

  15. Childs B, Poineau F, Czerwinski K, Sattelberger A (2015) The nature of the volatile technetium species formed during vitrification of borosilicate glass. J Radioanal Nucl Chem 306(2):417–421. https://doi.org/10.1007/s10967-015-4203-5

    Article  CAS  Google Scholar 

  16. Lukens WW, Shuh DK, Muller IS, McKeown DA (2003) X-ray absorption fine structure studies of speciation of technetium in borosilicate glasses. In: MRS Online Proceedings Library Archive 802

  17. Lukens WW, McKeown DA, Buechele AC, Muller IS, Shuh DK, Pegg IL (2007) Dissimilar behavior of technetium and rhenium in borosilicate waste glass as determined by X-ray absorption spectroscopy. Chem Mater 19(3):559–566. https://doi.org/10.1021/cm0622001

    Article  CAS  Google Scholar 

  18. Weaver J, Soderquist CZ, Washton NM, Lipton AS, Gassman PL, Lukens WW, Kruger AA, Wall NA, McCloy JS (2017) Chemical trends in solid alkali pertechnetates. Inorg Chem 56(5):2533–2544. https://doi.org/10.1021/acs.inorgchem.6b02694

    Article  CAS  Google Scholar 

  19. Weaver J (2016) Localized chemistry of 99Tc in simulated low activity waste glass. Washington State University, Pullman

    Google Scholar 

  20. Webb SM (2005) SIXpack: a graphical user interface for XAS analysis using IFEFFIT. Phys Scr 2005(T115):1011–1014. https://doi.org/10.1238/Physica.Topical.115a01011

    Article  Google Scholar 

  21. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541. https://doi.org/10.1107/S0909049505012719

    Article  CAS  Google Scholar 

  22. Michalowicz A, Moscovici J, Muller-Bouvet D, Provost K (2009) MAX: multiplatform applications for XAFS. J Phys Conf Ser 190(1):012034. https://doi.org/10.1088/1742-6596/190/1/012034

    Google Scholar 

  23. Michalowicz A, Moscovici J, Muller-Bouvet D, Provost K (2013) MAX (multiplatform applications for XAFS) new features. J Phys Conf Ser 430(1):012016. https://doi.org/10.1088/1742-6596/430/1/012016

    Article  Google Scholar 

  24. Wasserman SR, Allen PG, Shuh DK, Bucher JJ, Edelstein NM (1999) EXAFS and principal component analysis: a new shell game. J Synchrotron Radiat 6:284–286. https://doi.org/10.1107/S0909049599000965

    Article  CAS  Google Scholar 

  25. Calvin S (2013) XAFS for everyone. CRC Press, Boca Raton

    Google Scholar 

  26. Malinowski ER (2002) Factor analysis in chemistry. Wiley, New York

    Google Scholar 

  27. Cattell RB (1966) The scree test for the number of factors. Multivar Behav Res 1(2):245–276. https://doi.org/10.1207/s15327906mbr0102_10

    Article  CAS  Google Scholar 

  28. Downward L, Booth C, Lukens W, Bridges F (2006) A variation of the F-test for determining statistical relevance of particular parameters in EXAFS fits. Lawrence Berkeley National Laboratory, Berkeley

    Google Scholar 

  29. Yang S, Sheng G, Tan X, Hu J, Du J, Montavon G, Wang X (2011) Determination of Ni(II) uptake mechanisms on mordenite surfaces: a combined macroscopic and microscopic approach. Geochim Cosmochim Acta 75(21):6520–6534. https://doi.org/10.1016/j.gca.2011.08.024

    Article  CAS  Google Scholar 

  30. Um W, Chang H-S, Icenhower JP, Lukens WW, Serne RJ, Qafoku NP, Westsik JH, Buck EC, Smith SC (2011) Immobilization of 99-technetium (VII) by Fe(II)-goethite and limited reoxidation. Environ Sci Technol 45(11):4904–4913. https://doi.org/10.1021/es104343p

    Article  CAS  Google Scholar 

  31. Gong C-MS, Lukens WW, Poineau F, Czerwinski KR (2008) Reduction of pertechnetate by acetohydroxamic acid: formation of [TcII(NO)(AHA)2(H2O)] + and implications for the UREX process. Inorg Chem 47(15):6674–6680. https://doi.org/10.1021/ic8000202

    Article  CAS  Google Scholar 

  32. Ressler T, Wong J, Roos J, Smith IL (2000) Quantitative speciation of Mn-bearing particulates emitted from autos burning (methylcyclopentadienyl) manganese tricarbonyl-added gasolines using XANES spectroscopy. Environ Sci Technol 34(6):950–958. https://doi.org/10.1021/es990787x

    Article  CAS  Google Scholar 

  33. Tanimoto S, Rehren T (2008) Interactions between silicate and salt melts in LBA glassmaking. J Archaeol Sci 35(9):2566–2573. https://doi.org/10.1016/j.jas.2008.04.016

    Article  Google Scholar 

  34. Soderquist CZ, Buck EC, McCloy JS, Schweiger MJ, Kruger AA (2016) Formation of technetium salts in hanford low-activity waste glass. J Am Ceram Soc 99(12):3924–3931. https://doi.org/10.1111/jace.14442

    Article  CAS  Google Scholar 

  35. Weaver J, Soderquist C, Gassman P, Walter E, Lukens W, McCloy JS (2017) Synthesis and characterization of 5- and 6-coordinated alkali pertechnetates. MRS Adv 2(10):525–542. https://doi.org/10.1557/adv.2017.18

    Article  CAS  Google Scholar 

  36. Keller C, Kanellakopulos B (1965) Ternary oxides of tri- to septivalent technetium and alkali metals. J Inorg Nucl Chem 27(4):787–795. https://doi.org/10.1016/0022-1902(65)80438-9

    Article  CAS  Google Scholar 

  37. Sharma BK (1995) Nuclear and radiation chemistry. Krishna Prakashan Media, Meerut

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Alain Michalowicz (Université Paris est Créteil Val de Marne), Dr. Steve Wasserman (Lilly Research Laboratories), Prof. Scott Calvin (Sarah Lawrence College) for their guidance in the use of the Straight No Chaser and Athena freewares. They would also like to acknowledge the help provided by Dr. Wayne Lukens in the setup, collection and processing of the XANES data. Special thanks is given to Paul Gassman for assistance with the reinterpretation of the Raman spectra of the Tc glasses. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. DOE under contract DE-AC05-76RL01830. Portions of this work were supported by U.S. Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division, Heavy Element Chemistry Program and were performed at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. DOE Office of Science by Stanford University. All original data presented in this work are available upon request from the corresponding author.

Funding

This work was supported by the Department of Energy’s Waste Treatment & Immobilization Plant Federal Project Office under the direction of Bill Hamel, Contract DE-EM0002904.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. McCloy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 221 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weaver, J.L., Soderquist, C., Wall, N. et al. Chemometric analyses of XANES data collected on 99Tc bearing silicate glasses. J Radioanal Nucl Chem 316, 17–27 (2018). https://doi.org/10.1007/s10967-018-5722-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5722-7

Keywords

Navigation