Skip to main content
Log in

On the application of ICP-MS techniques for measuring uranium and plutonium: a Nordic inter-laboratory comparison exercise

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Inductively coupled plasma mass spectrometry (ICP-MS) techniques are widely used for determination of long-lived radionuclides and their isotopic ratios in the nuclear fields. Uranium (U) and Plutonium (Pu) isotopes have been determined by many researchers with ICP-MS due to its relatively high sensitivity and short measurement time. In this work, an inter-laboratory comparison exercise among the Nordic countries was performed, focusing on the measurement of U and Pu isotopes in certified reference materials by ICP-MS. The performance and characters of different ICP-MS instruments are evaluated and discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Igarashi Y, Kim CK, Takaku Y et al (1990) Application of inductively coupled plasma mass spectrometry to the measurement of long-lived radionuclides in environmental samples. A review. Sect Title Inorg Anal Chem 6:157–164. https://doi.org/10.2116/analsci.6.157

    CAS  Google Scholar 

  2. Becker JS, Burow M, Zoriy MV et al (2004) Determination of uranium and thorium at trace and ultratrace levels in urine by laser ablation ICP-MS. At Spectrosc 25:197–202

    CAS  Google Scholar 

  3. Russell BC, Croudace IW, Warwick PE (2015) Determination of 135Cs and 137Cs in environmental samples: a review. Anal Chim Acta 890:7–20. https://doi.org/10.1016/j.aca.2015.06.037

    Article  CAS  Google Scholar 

  4. Povinec PP (2005) Ultra-sensitive radionuclide spectrometry: radiometrics and mass spectrometry synergy. Sect Title Water 263:413–417

    CAS  Google Scholar 

  5. Qiao J, Hou X, Miró M, Roos P (2009) Determination of plutonium isotopes in waters and environmental solids: a review. Anal Chim Acta 652:66–84. https://doi.org/10.1016/j.aca.2009.03.010

    Article  CAS  Google Scholar 

  6. Hou X, Roos P (2008) Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. Anal Chim Acta 608:105–139. https://doi.org/10.1016/j.aca.2007.12.012

    Article  CAS  Google Scholar 

  7. Feuerstein J, Boulyga SF, Galler P et al (2008) Determination of 90Sr in soil samples using inductively coupled plasma mass spectrometry equipped with dynamic reaction cell (ICP-DRC-MS). J Environ Radioact 99:1764–1769

    Article  CAS  Google Scholar 

  8. Ayranov M, Krahenbuhl U, Sahli H et al (2005) Determination of neptunium in soil by ICP-MS. Radiochim Acta 93:631–635

    CAS  Google Scholar 

  9. Tanimizu M, Sugiyama N, Ponzevera E, Bayon G (2013) Determination of ultra-low 236U/238U isotope ratios by tandem quadrupole ICP-MS/MS. J Anal At Spectrom 28:1372–1376. https://doi.org/10.1039/c3ja50145k

    Article  CAS  Google Scholar 

  10. Li C, Benkhedda K, Tolmachev S et al (2010) Measurement of 236U in human tissue samples using solid phase extraction coupled to ICP-MS. J Anal At Spectrom 25:730–734. https://doi.org/10.1039/b923909j

    Article  CAS  Google Scholar 

  11. Lind OC, Salbu B, Janssens K et al (2007) Characterization of U/Pu particles originating from the nuclear weapon accidents at Palomares, Spain, 1966 and Thule, Greenland, 1968. Sci Total Environ 376:294–305. https://doi.org/10.1016/j.scitotenv.2006.11.050

    Article  CAS  Google Scholar 

  12. Qiao J, Hansen V, Hou X et al (2012) Speciation analysis of 129I, 137Cs, 232Th, 238U, 239Pu and 240Pu in environmental soil and sediment. Appl Radiat Isot 70:1698–1708. https://doi.org/10.1016/j.apradiso.2012.04.006

    Article  CAS  Google Scholar 

  13. Qiao J, Hou X, Steier P et al (2015) Method for 236U determination in seawater using flow injection extraction chromatography and accelerator mass spectrometry Jixin. Anal Chem 87:7411–7417

    Article  CAS  Google Scholar 

  14. Qiao J, Hou X (2010) Fractionation of plutonium in environmental and bio-shielding concrete samples using dynamic sequential extraction. J Environ Radioact 101:244–249. https://doi.org/10.1016/j.jenvrad.2009.11.007

    Article  CAS  Google Scholar 

  15. Desideri D, Meli MA, Roselli C et al (2002) Determination of 236U and transuranium elements in depleted uranium ammunition by alpha-spectrometry and ICP-MS. Anal Bioanal Chem 374:1091–1095. https://doi.org/10.1007/s00216-002-1575-5

    Article  CAS  Google Scholar 

  16. Xu Y, Qiao J, Hou X et al (2014) Determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements. Talanta 119:590–595. https://doi.org/10.1016/j.talanta.2013.11.061

    Article  CAS  Google Scholar 

  17. Evrard O, Pointurier F, Onda Y et al (2014) Novel insights into fukushima nuclear accident from isotopic evidence of plutonium spread along coastal rivers. Environ Sci Technol 48:9334–9340. https://doi.org/10.1021/es501890n

    Article  CAS  Google Scholar 

  18. Godoy MLDP, Godoy JM, Roldão LA (2007) Application of ICP-QMS for the determination of plutonium in environmental samples for safeguards purposes. J Environ Radioact 97:124–136. https://doi.org/10.1016/j.jenvrad.2007.03.010

    Article  CAS  Google Scholar 

  19. Parrish R, Thirlwall M, Pickford C et al (2006) Determinaiton of 238U/235U, 236U/238U and uramium concentraiton in urine using SF-ICP-MS and MC-ICP-MS: na interlaboratory comparison. Health Phys 90:127–138

    Article  CAS  Google Scholar 

  20. Bu W, Zheng J, Guo Q et al (2014) A method of measurement of 239Pu, 240Pu, 241Pu in high U content marine sediments by sector field ICP-MS and its application to Fukushima sediment samples. Environ Sci Technol 48:534–541. https://doi.org/10.1021/es403500e

    Article  CAS  Google Scholar 

  21. Liao H, Zheng J, Wu F et al (2008) Determination of plutonium isotopes in freshwater lake sediments by sector-field ICP-MS after separation using ion-exchange chromatography. Appl Radiat Isot 66:1138–1145. https://doi.org/10.1016/j.apradiso.2008.01.001

    Article  CAS  Google Scholar 

  22. Epov VN, Douglas Evans R, Zheng J et al (2007) Rapid fingerprinting of 239Pu and 240Pu in environmental samples with high U levels using on-line ion chromatography coupled with high-sensitivity quadrupole ICP-MS detection. J Anal At Spectrom 22:1131–1137

    Article  CAS  Google Scholar 

  23. Bu W, Zheng J, Guo Q et al (2014) Ultra-trace plutonium determination in small volume seawater by sector field inductively coupled plasma mass spectrometry with application to Fukushima seawater samples. J Chromatogr A 1337:171–178. https://doi.org/10.1016/j.chroma.2014.02.066

    Article  CAS  Google Scholar 

  24. Thomas R (2004) Practical guide to ICP-MS. Marcel Dekker Inc, New York

    Google Scholar 

  25. Berglund M, Wieser ME (2011) Isotopic compositions of the elements 2009 (IUPAC Technical Report)*. Pure Appl Chem 83:397–410. https://doi.org/10.1351/PAC-REP-10-06-02

    Article  CAS  Google Scholar 

  26. Salminen-Paatero S, Nygren U, Paatero J (2012) 240Pu/239Pu mass ratio in environmental samples in Finland. J Environ Radioact 113:163–170. https://doi.org/10.1016/j.jenvrad.2012.06.005

    Article  CAS  Google Scholar 

  27. Wilcken KM, Barrows TT, Fifield LK et al (2007) AMS of natural 236U and 239Pu produced in uranium ores. Nucl Instrum Methods Phys Res, Sect B 259:727–732. https://doi.org/10.1016/j.nimb.2007.01.210

    Article  CAS  Google Scholar 

  28. Sjögren A, Appelblad PK, Tovedal A, Ramebäck H (2005) Isotope amount ratio measurements by ICP-MS: aspects of software induced measurement bias and non-linearity. J Anal At Spectrom 20:320–322

    Article  Google Scholar 

  29. Appelblad PK, Baxter DC (2000) A model for calculating dead time and mass discrimination correction factors from inductively coupled plasma mass spectrometry calibration curves. J Anal At Spectrom 15:557–560. https://doi.org/10.1039/b001152p

    Article  CAS  Google Scholar 

  30. Russell WA, Papanastassiou DA, Tombrello TA (1978) Ca isotope fractionation on the Earth and other solar system materials. Geochim Cosmochim Acta 42:1075–1090

    Article  CAS  Google Scholar 

  31. ISO (1995) Guide to the expression of uncertainty in measurement. ISO, Geneva

    Google Scholar 

  32. ISO (2008) Evaluation of measurement data—Guide to the expression of uncertainty in measurement. Int Organ Stand Geneva ISBN 50:134. https://doi.org/10.1373/clinchem.2003.030528

  33. Cheng H, Edwards RL, Hoff J et al (2000) The half-lives of 234U and 230th. Chem Geol 169:17–33

    Article  CAS  Google Scholar 

  34. Richter S, Goldberg SA (2003) Improved techniques for high accuracy isotope ratio measurements of nuclear materials using thermal ionization mass spectrometry. Int J Mass Spectrom 229:181–197

    Article  CAS  Google Scholar 

  35. Kuselman I, Fajgelj A (2010) IUPAC/CITAC guide: selection and use of proficiency testing schemes for a limited number of participants—chemical analytical laboratories (IUPAC Technical Report)*. Pure Appl Chem 82:1099–1135. https://doi.org/10.1351/PAC-REP-09-08-15

    Article  CAS  Google Scholar 

  36. Thompson M, Ellison SLR, Wood R (2006) The International Harmonized Protocol for the proficiency testing of analytical (IUPAC Technical Report). Pure Appl Chem 78:145–196. https://doi.org/10.1351/pac200678010145

    Article  CAS  Google Scholar 

  37. Osvath I, Tarjan S, Pitois A et al (2016) IAEA’s ALMERA network: supporting the quality of environmental radioactivity measurements. Appl Radiat Isot 109:90–95. https://doi.org/10.1016/j.apradiso.2015.12.062

    Article  CAS  Google Scholar 

  38. Nygren U, Ramebäck H, Baxter DC, Nilsson C (2005) Lanthanide phosphate interferences in actinide determination using inductively coupled plasma mass spectrometry. J Anal At Spectrom 20:529–534

    Article  CAS  Google Scholar 

  39. Povinec PP, Pham MK, Sanchez-Cabeza JA et al (2007) Reference material for radionuclides in sediment IAEA-384 (Fangataufa Lagoon sediment). J Radioanal Nucl Chem 273:383–393. https://doi.org/10.1007/s10967-007-6898-4ER

    Article  CAS  Google Scholar 

  40. Thirlwall M (2001) Inappropriate tail corrections can cause large inaccuracy in isotope ratio determination by MC-ICP-MS. J Anal At Spectrom 16:1121–1125. https://doi.org/10.1039/b103828c

    Article  Google Scholar 

  41. Zheng J, Tagami K, Homma-Takeda S, Bu W (2013) The key role of atomic spectrometry in radiation protection. J Anal At Spectrom 28:1676. https://doi.org/10.1039/c3ja50217a

    Article  CAS  Google Scholar 

  42. Cao L, Bu W, Zheng J et al (2016) Plutonium determination in seawater by inductively coupled plasma mass spectrometry: a review. Talanta 151:30–41. https://doi.org/10.1016/j.talanta.2016.01.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Special acknowledgement is given to NKS (Nordic Nuclear Safety Research) for the financial support. The participants and laboratories which responded to the inter-comparison exercise and contributed their time and facilities to the present work are hereby highly acknowledged. S. Salminen-Paatero is grateful to Hugh O´ Brien (Geological Survey of Finland) for providing instrument time. L. Skipperud thanks the Centre’s of Excellence funding scheme granted by the Research Council of Norway through Center for Environmental Radioactivity (CERAD), project number 223268/F50.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jixin Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, J., Lagerkvist, P., Rodushkin, I. et al. On the application of ICP-MS techniques for measuring uranium and plutonium: a Nordic inter-laboratory comparison exercise. J Radioanal Nucl Chem 315, 565–580 (2018). https://doi.org/10.1007/s10967-018-5697-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5697-4

Keywords

Navigation