Skip to main content
Log in

Gamma radiation and osmotic potential of the nutrient solution differentially affect macronutrient concentrations, pH and EC in chilhuacle pepper fruits

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Chilhuacle pepper (Capsicum annuum L.) seeds were exposed to gamma radiation (GR) doses (0, 10, 80 and 120 Gy), and plants were grown in hydroponics with different osmotic potentials (OP) (− 0.036, − 0.072, − 0.092, and − 0.108 MPa) in the nutrient solution. We measured the nutrient concentrations, pH and electrical conductivity (EC) in fruits at different time points after transplanting (70, 90 and 130 dat), and found the GR, nutrient solution OP and their interactions differentially affected N, P, K, Ca, and Mg concentrations, as well as pH and EC in chilhuacle peppers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA, Miah G, Usman M (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotec Eq 30:1–16. https://doi.org/10.1080/13102818.2015.1087333

    Article  CAS  Google Scholar 

  2. Ahloowalia B, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204. https://doi.org/10.1023/B:EUPH.0000014914.85465.4f

    Article  Google Scholar 

  3. Mohajer S, Mat Taha R, Lay MM, Khorasani Esmaeili A, Khalili M (2014) Stimulatory effects of gamma irradiation on phytochemical properties, mitotic behaviour, and nutritional composition of sainfoin (Onobrychis viciifolia Scop.). Sci World J. https://doi.org/10.1155/2014/854093

    Google Scholar 

  4. Singh B, Datta PS (2010) Effect of low dose gamma irradiation on plant and grain nutrition of wheat. Radiat Phys Chem 79:819–825. https://doi.org/10.1016/j.radphyschem.2010.03.011

    Article  CAS  Google Scholar 

  5. Singh B, Ahuja S, Singhal R, Babu PV (2013) Effect of gamma radiation on wheat plant growth due to impact on gas exchange characteristics and mineral nutrient uptake and utilization. J Radioanal Nucl Chem 298:249–257. https://doi.org/10.1007/s10967-012-2342-5

    Article  CAS  Google Scholar 

  6. Shiozaki N, Hattori I, Gojo R, Tezuka T (1999) Activation of growth and nodulation in a symbiotic system between pea plants and leguminous bacteria by near-UV radiation. J Photochem Photobiol, B 50:33–37. https://doi.org/10.1016/S1011-1344(99)00065-2

    Article  CAS  Google Scholar 

  7. Hassan AB, Osman GA, Rushdi MA, Eltayeb MM, Diab E (2009) Effect of gamma irradiation on the nutritional quality of maize cultivars (Zea mays) and sorghum (Sorghum bicolor) grains. Pak J Nutr 8:167–171

    Article  CAS  Google Scholar 

  8. Choudhary KK, Agrawal S (2014) Cultivar specificity of tropical mung bean (Vigna radiata L.) to elevated ultraviolet-B: changes in antioxidative defense system, nitrogen metabolism and accumulation of jasmonic and salicylic acids. Environ Exp Bot 99:122–132. https://doi.org/10.1016/j.envexpbot.2013.11.006

    Article  CAS  Google Scholar 

  9. Maity JP, Kar S, Chakraborty A, Sudershan M, Santra SC (2010) Study on trace elements (using energy dispersive X-ray fluorescence technique) of edible seeds from Cicer arietinum L. plants developed from gamma irradiated seeds and variation of yielding capacity. J Radioanal Nuclear Chem 283:225–230. https://doi.org/10.1007/s10967-009-0234-0

    Article  CAS  Google Scholar 

  10. Rejili M, Telahigue D, Lachiheb B, Mrabet A, Ferchichi A (2008) Impact of gamma radiation and salinity on growth and K+/Na+ balance in two populations of Medicago sativa (L.) cultivar Gabès. Prog Nat Sci 18:1095–1105. https://doi.org/10.1016/j.pncs.2008.04.004

    Article  CAS  Google Scholar 

  11. Qi W, Zhang L, Xu H, Wang L, Jiao Z (2014) Physiological and molecular characterization of the enhanced salt tolerance induced by low-dose gamma irradiation in Arabidopsis seedlings. Biochem Biophys Res Commun 450:1010–1015. https://doi.org/10.1016/j.bbrc.2014.06.086

    Article  CAS  Google Scholar 

  12. Nguyen NT, McInturf SA, Mendoza-Cózatl DG (2016) Hydroponics: a versatile system to study nutrient allocation and plant responses to nutrient availability and exposure to toxic elements. J Vis Exp. 113:e54317. https://doi.org/10.3791/54317

    Google Scholar 

  13. Trejo-Téllez LI, Gómez-Merino FC (2012) Nutrient solutions for hydroponic systems. In: Asao T (ed) Hydroponics-A Standard methodology for plant biological researches. InTech, Rijeka, pp 1–23

    Google Scholar 

  14. Albu-Yaron A, Feigin A, Rylski I (1993) The quality of tomato for canning as affected by combined chloride, nitrate and osmotic potential of the nutrient solution. Plant Foods Hum Nutr 43:201–210

    Article  CAS  Google Scholar 

  15. Amjad M, Anjum MA (2003) Effect of post-irradiation storage on the radiation-induced damage in onion seeds. Asian J Plant Sci 2:702–707

    Article  Google Scholar 

  16. Tomlekova N (2010) Induced mutagenesis for crop improvement in Bulgaria. Plant Mutation Reports 2:4–27

    Google Scholar 

  17. RHS Colour Chart (2015) Colour Chart, 6th edn. The Royal Horticultural Society, London

    Google Scholar 

  18. Bremner JM (1965) Inorganic form of nitrogen. Agronomy 9:119–237

    Google Scholar 

  19. Nassar AH, Hashim MF, Hassan NS, Abo-Zaid H (2004) Effect of gamma irradiation and phosphorus on growth and oil production of chamomile (Chamomilla recutita L. Rauschert). Int J Agric Biol 6:776–780

    Google Scholar 

  20. Ling APK, Chia JY, Hussein S, Harun AR (2008) Physiological responses of Citrus sinensis to gamma irradiation. World Appl Sci J 5:12–19

    Google Scholar 

  21. Abbas HH, Farid IM, Soliman SM, Galal IGM, Ismail MM, Kotb EA, Moslhy SH (2015) Growth and some macronutrients uptake by castor bean irradiated with gamma ray and irrigated with wastewater under sandy soil condition. J Soil Sci Agric Eng Mansoura Univ 6:433–444

    Google Scholar 

  22. Jones HE, West HM, Chamberlain PM, Parekh NR, Beresford NA, Crout NMJ (2004) Effects of gamma irradiation on Holcus lanatus (Yorkshire fog grass) and associated soil microorganisms. J Environ Radioact 74:57–71. https://doi.org/10.1016/j.jenvrad.2004.01.027

    Article  CAS  Google Scholar 

  23. Bajaj YPS (1970) Effect of gamma-irradiation on growth, RNA, protein, and nitrogen contents of bean callus cultures. Ann Bot 34:1089–1096

    Article  CAS  Google Scholar 

  24. Ling APK, Ung YC, Hussein S, Harun AR, Tanaka A, Yoshihiro H (2013) Morphological and biochemical responses of Oryza sativa L. (cultivar MR219) to ion beam irradiation. J Zhejiang Univer SC B 14:1132–1143. https://doi.org/10.1631/jzus.B1200126

    Article  CAS  Google Scholar 

  25. Moussa HR (2006) Role of gamma irradiation in regulation of NO3 level in rocket (Eruca vesicaria subsp. sativa) plants. Russ J Plant Physiol 53:193–197. https://doi.org/10.1134/S1021443706020075

    Article  CAS  Google Scholar 

  26. Iqbal J (1976) Cell population effects on levels of nucleic acids (DNA & RNA) in irradiated shoot apices of Capsicum annuum L. seedlings. Biologia 22:61–66

    CAS  Google Scholar 

  27. Tikhonov YB, Panarin VP, Alimova GV, Mikhailova NB (1980) Effect of gamma-irradiation of seeds on the productivity and nitrogen metabolism of Datura innoxia. Rastit Resur 16:237–242

    CAS  Google Scholar 

  28. Zham D, Voloozh D (1976) The effect of pre-sowing gamma irradiation of seeds on the yield and productivity of outdoor tomatoes. Biologia 31:9–14

    Google Scholar 

  29. Rennie DA, Nelson SH (1975) Low-dose irradiation of vegetable seeds: the effects on N and P uptake. Can J Plant Sci 55:761–769. https://doi.org/10.4141/cjps75-119

    Article  Google Scholar 

  30. Moussa HR (2006) Gamma irradiation regulation of nitrate level in rocket (Eruca vesicaria subsp. sativa) plants. J New Seeds 8:91–100

    Article  Google Scholar 

  31. Eno CF, Popenoe H (1963) The effect of gamma radiation on the availability of nitrogen and phosphorus in soil. Soil Sci Soc Am J 27:299–301. https://doi.org/10.2136/sssaj1963.03615995002700030025x

    Article  CAS  Google Scholar 

  32. Burgos CF (1964) The effect of gamma radiation on soil nitrogen, phosphorus and organic matter. Ceiba 10:53–55

    CAS  Google Scholar 

  33. Cawse PA (1967) Effects of low sub-sterilising doses of gamma radiation on carbon, nitrogen and phosphorus in fresh soils. J Sci Food Agric 18:388–391. https://doi.org/10.1002/jsfa.2740180903

    Article  CAS  Google Scholar 

  34. Razavi darbar S, Lakzian A (2007) Evaluation of chemical and biological consequences of soil sterilization methods. Casp J Environ Sci 5:87–91

    Google Scholar 

  35. Bank TL, Kukkadapu RK, Madden AS, Ginder-Vogel MA, Baldwin ME, Jardine PM (2008) Effects of gamma-sterilization on the physico-chemical properties of natural sediments. Chem Geol 251:1–7. https://doi.org/10.1016/j.chemgeo.2008.01.003

    Article  CAS  Google Scholar 

  36. Zhang S, Cui S, Gong X, Chang L, Jia S, Yang X, Wu D, Zhang X (2016) Effects of gamma irradiation on soil biological communities and C and N pools in a clay loam soil. Appl Soil Ecol 108:352–360. https://doi.org/10.1016/j.apsoil.2016.09.007

    Article  Google Scholar 

  37. Luque A, Bingham F (1981) The effect of the osmotic potential and specific ion concentration of the nutrient solution on the uptake and reduction of nitrate by barley seedlings. Plant Soil 63:227–237. https://doi.org/10.1007/BF02374601

    Article  CAS  Google Scholar 

  38. Bhat R, Sridhar KR, Young CC, Bhagwath AA, Ganesh S (2008) Composition and functional properties of raw and electron beam-irradiated Mucuna pruriens seeds. Int J Food Sci Tech 43:1338–1351. https://doi.org/10.1111/j.1365-2621.2007.01617.x

    Article  CAS  Google Scholar 

  39. Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453. https://doi.org/10.1104/pp.116.2.447

    Article  CAS  Google Scholar 

  40. Shereen A, Ansari R, Mumtaz S, Bughio H, Mujtaba S, Shirazi M, Khan M (2009) Impact of gamma irradiation induced changes on growth and physiological responses of rice under saline conditions. Pak J Bot 41:2487–2495

    Google Scholar 

  41. Jones JB Jr (2016) Hydroponics: a practical guide for the soilless grower. CRC Press, Boca Raton

    Google Scholar 

  42. Bangerth F (1979) Calcium-related physiological disorders of plants. Annu Rev Phytopathol 17:97–122

    Article  CAS  Google Scholar 

  43. White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511. https://doi.org/10.1093/aob/mcg164

    Article  CAS  Google Scholar 

  44. Giuffrida F, Martorana M, Leonardi C (2009) How sodium chloride concentration in the nutrient solution influences the mineral composition of tomato leaves and fruits. HortScience 44:707–711

    Google Scholar 

  45. Agrawal S, Rathore D, Singh A (2006) Combined effects of enhanced ultraviolet-B radiation and mineral nutrients on growth, biomass accumulation and yield characteristics of two cultivars of Vigna radiata L. J Environ Biol 27:55–60

    CAS  Google Scholar 

  46. Ali H, Ghori Z, Sheikh S, Gul A (2015) Effects of gamma radiation on crop production. In: Crop Production and Global Environmental Issues. Springer, Cham. https://doi.org/10.1007/978-3-319-23162-4_2

  47. Hamideldin N, Hussien O (2013) Morphological, physiological and molecular changes in Solanum tuberosum L. in response to pre-sowing tuber irradiation by gamma rays. Am J Food Sci Tech 1:36–41. https://doi.org/10.12691/ajfn-2-1-1

    Google Scholar 

  48. Azzam EI, Jay-Gerin J-P, Pain D (2012) Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 327:48–60. https://doi.org/10.1016/j.canlet.2011.12.012

    Article  CAS  Google Scholar 

  49. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Bioch 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

    Article  CAS  Google Scholar 

  50. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

    Article  CAS  Google Scholar 

  51. Luis A, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141:330–335. https://doi.org/10.1104/pp.106.078204

    Article  Google Scholar 

  52. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 217037. https://doi.org/10.1155/2012/217037

  53. Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  54. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498. https://doi.org/10.1016/j.tplants.2004.08.009

    Article  CAS  Google Scholar 

  55. Vanhoudt N, Horemans N, Wannijn J, Nauts R, Van Hees M, Vandenhove H (2014) Primary stress responses in Arabidopsis thaliana exposed to gamma radiation. J Environ Radioact 129:1–6. https://doi.org/10.1016/j.jenvrad.2013.11.011

    Article  CAS  Google Scholar 

  56. Rathore D, Agrawal S (2014) Interactive effect of ultraviolet-B and mineral nutrients on accumulation and translocation of trace elements in wheat crop. J Environ Biol 35:505

    Google Scholar 

  57. Agrawal S, Rathore D (2007) Changes in oxidative stress defense system in wheat (Triticum aestivum L.) and mung bean (Vigna radiata L.) cultivars grown with and without mineral nutrients and irradiated by supplemental ultraviolet-B. Environ Exp Bot 59:21–33

    Article  CAS  Google Scholar 

  58. Alikamanoglu S, Yaycili O, Sen A (2011) Effect of gamma radiation on growth factors, biochemical parameters, and accumulation of trace elements in soybean plants (Glycine max L. Merrill). Biol Trace Elem Res 141:283–293. https://doi.org/10.1007/s12011-010-8709-y

    Article  CAS  Google Scholar 

  59. Santos AMG, Lins SRO, Silva JMd, Oliveira SMAd (2015) Low doses of gamma radiation in the management of postharvest Lasiodiplodia theobromae in mangos. Braz J Microbiol 46:841–847. https://doi.org/10.1590/S1517-838246320140363

    Article  Google Scholar 

  60. Hossain F, Parvez AK, Munshi MK, Khalil I, Huque R (2014) Postharvest treatments of radiation and chemical on organoleptic and biochemical properties of mango (Mangifera indica L.) in relation to delay ripening. Am Eurasian J Agric Environ Sci 14:555–564. https://doi.org/10.5829/idosi.aejaes.2014.14.06.12349

    CAS  Google Scholar 

  61. Yasuor H, Ben-Gal A, Yermiyahu U, Beit-Yannai E, Cohen S (2013) Nitrogen management of greenhouse pepper production: agronomic, nutritional, and environmental implications. HortScience 48:1241–1249

    CAS  Google Scholar 

  62. Colla G, Roupahel Y, Cardarelli M, Rea E (2006) Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral composition of grafted watermelon plants. HortScience 41:622–627

    CAS  Google Scholar 

  63. Núñez-Ramírez F, González-Mendoza D, Grimaldo-Juárez O, Cervantes-Díaz L (2011) Nitrogen fertilization effect on antioxidants compounds in fruits of habanero chili pepper (Capsicum chinense). Int J Agric Biol 13:827–830

    Google Scholar 

  64. del Amor FM, Martinez V, Cerdá A (1999) Salinity duration and concentration affect fruit yield and quality, and growth and mineral composition of melon plants grown in perlite. HortScience 34:1234–1237

    Google Scholar 

  65. Topuz A, Ozdemir F (2004) Influences of gamma irradiation and storage on the capsaicinoids of sun-dried and dehydrated paprika. Food Chem 86:509–515. https://doi.org/10.1016/j.foodchem.2003.09.003

    Article  CAS  Google Scholar 

  66. Falusi OA, Daudu OAY, da Silva JAT (2012) Effect of exposure time of fast neutron irradiation on growth and yield parameters of Capsicum annuum and Capsicum frutescens. Afr J Plant Sci 6:251–255

    Google Scholar 

  67. Tomlekova NB, White PJ, Thompson JA, Penchev EA, Nielen S (2017) Mutation increasing β-carotene concentrations does not adversely affect concentrations of essential mineral elements in pepper fruit. PLoS ONE 12:e0172180. https://doi.org/10.1371/journal.pone.0172180

    Article  Google Scholar 

  68. Do Rêgo ER, Do Rêgo MM, Cruz CD, Finger FL, Casali VWD (2011) Phenotypic diversity, correlation and importance of variables for fruit quality and yield traits in Brazilian peppers (Capsicum baccatum). Genet Resour Crop Evol 58:909–918. https://doi.org/10.1007/s10722-010-9628-7

    Article  Google Scholar 

  69. Do Rêgo ER, do Rêgo MM, Finger FL (2016) Production and breeding of chilli peppers (Capsicum spp.). Springer, Cham. https://doi.org/10.1007/978-3-319-06532-8

  70. García-Gaytán V, Gómez-Merino FC, Trejo-Téllez LI, Baca-Castillo GA, García-Morales S (2017) The chilhuacle chili (Capsicum annuum L.) in Mexico: description of the variety, its cultivation, and uses. Int J Agron. 5641680. https://doi.org/10.1155/2017/5641680

Download references

Acknowledgements

We thank the Laboratory of Plant Nutrition of the Colegio de Postgraduados Campus Montecillo for the facilities provided to perform our experiments. We also thank Mexico’s National Council for Science and Technology (CONACYT) for the doctorate scholarship granted to VGG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libia Iris Trejo-Téllez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Gaytán, V., Trejo-Téllez, L.I., Gómez-Merino, F.C. et al. Gamma radiation and osmotic potential of the nutrient solution differentially affect macronutrient concentrations, pH and EC in chilhuacle pepper fruits. J Radioanal Nucl Chem 315, 145–156 (2018). https://doi.org/10.1007/s10967-017-5655-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5655-6

Keywords

Navigation