Fitting special peak shapes of prompt gamma spectra

  • László Szentmiklósi


Special spectrum regions, like around the annihilation peak at 511 keV, the boron peak at 478 keV, the Ge-triangles, as well as complicated multiplets or heavily distorted intense peaks require special attention when evaluating prompt gamma activation analysis (PGAA) spectra. A computer code and the related analytical practice of the Budapest PGAA facility is presented to improve the spectroscopy of these cases beyond the past practice relying on the well-known Hypermet-PC software.


Prompt gamma activation analysis Spectrum evaluation Annihilation peak Doppler-broadened boron peak Ge triangles 



The author gratefully acknowledges the financial support of the Bólyai János Research Fellowship of the Hungarian Academy of Sciences. This work was part of the Project No. 124068 that has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the K_17 funding scheme.

Supplementary material

10967_2017_5589_MOESM1_ESM.docx (105 kb)
Supplementary material 1 (DOCX 105 kb)


  1. 1.
    Molnár GL (2004) Handbook of prompt gamma activation analysis with neutron beams. Kluwer. (ISBN 978-0-387-23359-8)Google Scholar
  2. 2.
    Fynbo H (2003) Doppler broadened γ-lines from exotic nuclei. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 207:275–282. CrossRefGoogle Scholar
  3. 3.
    Sakai Y, Yonezawa C, Matsue H et al (1996) Ejection of energetic Li-7* ions produced in B-10(n, α)Li-7* reaction from boron coated silicon wafer. J Radioanal Nucl Chem 207:275–284. CrossRefGoogle Scholar
  4. 4.
    Sakai Y, Yonezawa C, Matsue H et al (1996) Ranges of Li-7 produced in B-10(n, α)(7)*Li reaction. Radiochim Acta 72:45–49CrossRefGoogle Scholar
  5. 5.
    Knezevic D, Jovancevic N, Krmar M, Petrovic J (2016) Modeling of neutron spectrum in the gamma spectroscopy measurements with Ge-detectors. Nucl Instrum Methods A 833:23–26. CrossRefGoogle Scholar
  6. 6.
    Hotz HP, Mathiesen JM, Hurley JP (1968) Measurement of positron annihilation line shapes with a Ge(Li) detector. Phys Rev 170:351–355. CrossRefGoogle Scholar
  7. 7.
    Gilmore G, Hemingway JD (2008) In: Gilmore GR (ed) Practical gamma-ray spectrometry—2nd Edition. Wiley, Chichester, ISBN: 978-0-470-86196-7Google Scholar
  8. 8.
    Révay Z, Firestone RB, Belgya T, Molnár GL (2004) Prompt gamma-ray spectrum catalog. In: Molnár GL (ed) Handbook of prompt gamma activation analísis with neutron beams. Kluwer Academic Publishers, Dordrecht, pp 173–366CrossRefGoogle Scholar
  9. 9.
    Szentmiklósi L, Belgya T, Révay Z (2005) Molnár GL (2005) Digital signal processing in prompt gamma activation analysis. J Radioanal Nucl Chem 264(1):229–234. CrossRefGoogle Scholar
  10. 10.
    Kraner HW, Chasman C, Jones KW (1968) Effects produced by fast neutron bombardment of Ge(Li) gamma ray detectors. Nucl Instrum Methods 62:173–183CrossRefGoogle Scholar
  11. 11.
    Belgya T, Kis Z, Szentmiklósi L et al (2008) A new PGAI-NT setup at the NIPS facility of the Budapest Research Reactor. J Radioanal Nucl Chem 278(2008):713–718. CrossRefGoogle Scholar
  12. 12.
    Kis Z, Szentmiklósi L, Belgya T (2015) NIPS-NORMA station—a combined facility for neutron-based nondestructive element analysis and imaging at the Budapest Neutron Centre. Nucl Instrum Methods Phys Res Sect A 779(2015):116–123. CrossRefGoogle Scholar
  13. 13.
    Révay Z, Belgya T, Szentmiklósi L et al (2008) In situ determination of hydrogen inside a catalytic reactor using prompt gamma activation analysis. Anal Chem 80:6066–6071. CrossRefGoogle Scholar
  14. 14.
    Moser M, Vilé G, Colussi S et al (2015) Structure and reactivity of ceria-zirconia catalysts for bromine and chlorine production via the oxidation of hydrogen halides. J Catal. Google Scholar
  15. 15.
    Farra R, García-Melchor M, Eichelbaum M et al (2013) Promoted ceria: a structural, catalytic, and computational study. ACS Catal. Google Scholar
  16. 16.
    Révay Z (2009) Determining elemental composition using prompt gamma activation analysis. Anal Chem 81:6851–6859CrossRefGoogle Scholar
  17. 17.
    Fazekas B, Molnár G, Belgya T et al (1997) Introducing HYPERMET-PC for automatic analysis of complex gamma-ray spectra. J Radioanal Nucl Chem 215:271–277CrossRefGoogle Scholar
  18. 18.
    Révay Z, Belgya T, Molnár GL (2005) Application of hypermet-PC in PGAA. J Radioanal Nucl Chem 265:261–265CrossRefGoogle Scholar
  19. 19.
    Révay Z, Belgya T, Ember PP, Molnár GL (2001) Recent developments in HYPERMET PC. J Radioanal Nucl Chem 248:401–405CrossRefGoogle Scholar
  20. 20.
    Belgya T (2010) Determination of thermal radiative capture cross section. In: EFNUDAT slow and resonance neutrons, a scientific workshop on nuclear data measurements, theory and applications, 23–25 Sept 2009, vol 1, pp 115–120Google Scholar
  21. 21.
    Molnár GL, Belgya T, Révay Z, Qaim SM (2002) Partial and total thermal neutron capture cross sections for non-destructive assay and transmutation monitoring of Tc-99. Radiochim Acta 90:479–482CrossRefGoogle Scholar
  22. 22.
    Szentmiklósi L, Kasztovszky Z, Belgya T et al (2016) Fifteen years of success: user access programs at the Budapest prompt gamma activation analysis laboratory. J Radioanal Nucl Chem 309:71–77. CrossRefGoogle Scholar
  23. 23.
    Szentmiklósi L, Gméling K, Révay Z (2007) Fitting the boron peak and resolving interferences in the 450–490 keV region of PGAA spectra. J Radioanal Nucl Chem 271:447–453. CrossRefGoogle Scholar
  24. 24.
    Philips GW, Marlow KW (1976) HYPERMET. Nucl Instrum Methods 72:125Google Scholar
  25. 25.
    Simonits A, Östör J, Kálvin S, Fazekas B (2003) HyperLab: a new concept in gamma-ray spectrum analysis. J Radioanal Nucl Chem 257:589–595. CrossRefGoogle Scholar
  26. 26.
    Park BG, Choi HD, Park CS (2012) New development of hypergam and its test of performance for gamma-ray spectrum analysis. Nucl Eng Technol 44:781–790. CrossRefGoogle Scholar
  27. 27.
    Park CS, Choi HD, Sun GM, Whang JH (2008) Status of developing HPGe gamma-ray spectrum analysis code HYPERGAM. Prog Nucl Energy 50:389–393. CrossRefGoogle Scholar
  28. 28.
    Choi HD, Jung NS, Park BG (2009) Analysis of Doppler-broadened peak in thermal neutron induced B-10(n, alpha gamma)Li-7 reaction using HYPERGAM. Nucl Eng Technol 41:113–124CrossRefGoogle Scholar
  29. 29.
    Kubo MK, Sakai Y (2000) A simple derivation of the formula of the Doppler broadened 478 keV—ray lineshape from 7*Li and its analytical application. J Nucl Radiochem Sci 1:83–85CrossRefGoogle Scholar
  30. 30.
    Lindhard J, Scharff M, Schiott HE (1963) Danske Videnskap Selsk Mat Fys Medd 33:1Google Scholar
  31. 31.
    Lindhard J, Scharff M (1961) Energy dissipation by Ions in the keV region. Phys Rev 124:128CrossRefGoogle Scholar
  32. 32.
    Neuwirth W, Hauser U, Kühn E (1969) Z Phys 220:241CrossRefGoogle Scholar
  33. 33.
    Magara M, Yonezawa C (1998) Decomposition of prompt gamma-ray spectra including the Doppler-broadened peak for boron determination. Nucl Instrum Methods A 411:130–136CrossRefGoogle Scholar
  34. 34.
    Baechler S, Kudejova P, Jolie J et al (2002) Prompt gamma-ray activation analysis for determination of boron in aqueous solutions. Nucl Instrum Methods Phys A 488:410–418CrossRefGoogle Scholar
  35. 35.
    Yonezawa C (1999) Prompt gamma-ray analysis using cold and thermal guided neutron beams at JAERI. Biol Trace Elem Res 71–2:407–413CrossRefGoogle Scholar
  36. 36.
    Byun SH, Sun GM, Choi HD (2004) Prompt gamma activation analysis of boron in reference materials using diffracted polychromatic neutron beam. Nucl Instrum Methods Phys Res B 213:535–539. CrossRefGoogle Scholar
  37. 37.
    Fehrenbacher G, Meckbach R, Paretzke HG (1996) Fast neutron detection with germanium detectors: computation of response functions for the 692 keV inelastic scattering peak. Nucl Instrum Methods A 372:239–245. CrossRefGoogle Scholar
  38. 38.
    Lone MA, Santry DC, Inglis WM (1980) MeV neutron production from thermal neutron capture in Li and B compounds. Nucl Instrum Methods 174:521–529CrossRefGoogle Scholar
  39. 39.
    Heusser G (1996) Cosmic ray interaction study with low-level Ge-spectrometry. Nucl Instrum Methods A 369:539–543. CrossRefGoogle Scholar
  40. 40.
    Siiskonen T, Toivonen H (2005) A model for fitting peaks induced by fast neutrons in an HPGe detector. Nucl Instrum Methods A 540:403–411. CrossRefGoogle Scholar
  41. 41.
    Fehrenbacher G, Meckbach R, Paretzke HG (1997) Fast neutron detection with germanium detectors: unfolding the 692 keV peak response for fission neutron spectra. Nucl Instrum Methods A 397:391–398. CrossRefGoogle Scholar
  42. 42.
    Yonezawa C, Wood AKH (1995) Prompt gamma-ray analysis of boron with cold and thermal-neutron guided beams. Anal Chem 67:4466–4470. CrossRefGoogle Scholar
  43. 43.
    Anderson DL, Cunningham WC, Mackey EA (1990) Determination of boron in food and biological reference materials by neutron capture prompt gamma activation. Fresenius J Anal Chem 338:554–558CrossRefGoogle Scholar
  44. 44.
    Cho H-J, Chung Y-S, Kim Y-J (2005) Analysis of boron in biological reference materials using prompt gamma activation analysis. J Radioanal Nucl Chem 264:701–705. CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Nuclear Analysis and Radiography Department, Centre for Energy ResearchHungarian Academy of SciencesBudapestHungary

Personalised recommendations