Skip to main content
Log in

18O(p,p′γ)18O nuclear reaction in the determination of oxygen by proton induced γ-ray emission

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A particle induced γ-ray emission methodology employing the 18O(p,p′γ)18O (E γ = 1982 keV) nuclear reaction is described for the non-destructive determination of bulk oxygen in materials. The development of the methodology follows a comprehensive measurement of the thick target yields of the 1982 keV prompt γ-rays in the 3.0–4.2 MeV proton energy region and a systematic assessment of such analytical features as the limit of detection, probing depth, precision and accuracy. The methodology is validated by analyzing binary, ternary and multinary oxides. It is simple and rapid, and in combination with prompt γ-ray producing reactions involving the other constituents, enables the complete compositional analysis of oxygen bearing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zheng J, Xiao J, Zhang Ji-Guang (2016) The roles of oxygen non-stoichiometry on the electrochemical properties of oxide-based cathode materials. Nano Today 11:678–694

    Article  CAS  Google Scholar 

  2. Ganduglia-Pirovano MV, Hofmann A, Sauer J (2007) Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges. Surf Sci Rep 62:219–270

    Article  CAS  Google Scholar 

  3. Cohen DD, Rose EK (1992) Analysis of oxygen by charged particle bombardment. Nucl Instr Meth B 66:158–190

    Article  Google Scholar 

  4. Amsel G, Samuel D (1967) Microanalysis of the stable isotopes of oxygen by means of nuclear reactions. Anal Chem 39(14):1689–1698

    Article  CAS  Google Scholar 

  5. Csedreki L, Huszank R (2015) Application of PIGE, BS and NRA techniques to oxygen profiling in steel joints using deuteron beam. Nucl Instr Meth B 348:165–169

    Article  CAS  Google Scholar 

  6. Luomajarvi M, Rauhala E, Hautala M (1992) Oxygen detection by non-Rutherford backscattering below 2.5 MeV. Nucl Instr Meth B 9:255–258

    Article  Google Scholar 

  7. Leavitt JA, McIntyre LC Jr, Ashbaugh MD, Oder JG, Lin Z, Dezfouly-Arjomandy B (1990) Cross sections for 170.5° backscattering of 4He from oxygen for 4He energies between 1.8 and 5.0 MeV. Nucl Instr Meth B 44:260–265

    Article  Google Scholar 

  8. Vickridge IC, Tallon J, Presland M (1994) High precision determination of 160 in high Tc superconductors by DIGME. Nucl Instr Meth B 85:95–99

    Article  CAS  Google Scholar 

  9. Vickridge IC, Tallon J, Presland M (1995) 16O DIGME of high Tc materials. Nucl Instr Meth B 99:450–453

    Article  CAS  Google Scholar 

  10. Raisanen J (1986) A rapid method for carbon and oxygen determination with external proton induced gamma-ray emission analysis. Nucl Instr Meth B 17:344–348

    Article  Google Scholar 

  11. Chhillar S, Acharya R, Tripathi R, Sodaye S, Sudarshan K, Rout PC, Mukerjee SK, Pujari PK (2015) Compositional characterization of lithium titanate ceramic samples by determining Li, Ti and O concentrations simultaneously using PIGE at 8 MeV proton beam. J Radioanal Nucl Chem 305(2):463–467

    Article  CAS  Google Scholar 

  12. Kumar S, Sunitha Y, Reddy GLN, Sukumar AA, Ramana JV, Sarkar A, Verma R (2016) Oxygen determination in materials by 18O(p,αγ)15 N nuclear reaction. Nucl Instr Meth B 378:38–44

    Article  CAS  Google Scholar 

  13. Kiss AZ, Koltay E, Nyako B, Somorjai E, Anttila A, Raisanen J (1985) Measurements of relative thick target yields for PIGE analysis on light elements in the proton energy interval 2.4–4.2 MeV. J Radioanal Nucl Chem 89:123–141

    Article  CAS  Google Scholar 

  14. Mateus R, Jesus AP, Ribeiro JP (2005) A code for quantitative analysis of light elements in thick samples by PIGE. Nucl Instr Meth B 229:302–308

    Article  CAS  Google Scholar 

  15. Ziegler JF, Biersack JP, Ziegler D (2013) SRIM- The Stopping and Range of Ions in Matter. http://www.srim.org/

  16. Mayer M (1997) SIMNRA user’s guide, Report IPP 9/113. Max Planck Institute for Plasmaphysik, Garching, Germany

  17. Bashkin S, Richards HT (1951) Proton bombardment of the lithium isotopes. Phys Rev 84:1124–1129

    Article  CAS  Google Scholar 

  18. Malmberg PR (1956) Elastic scattering of protons from Li7. Phys Rev 101:114–117

    Article  CAS  Google Scholar 

  19. Gurbich AF (1998) Evaluation of non-Rutherford proton elastic scattering for cross section carbon. Nucl Instr Meth B 136–138:60–65

    Article  Google Scholar 

  20. Gurbich AF (1997) Evaluation of non-Rutherford proton elastic scattering for cross section oxygen. Nucl Instr Meth B 129:311–316

    Article  CAS  Google Scholar 

  21. Ajzenberg-Selove F (1986) Energy levels of light nuclei A = 16–17. Nucl Phys A 460(1):1–110

    Article  Google Scholar 

  22. Ajzenberg-Selove F (1987) Energy levels of light nuclei A = 18–20. Nucl Phys A 475(1):1–198

    Article  Google Scholar 

  23. Sunitha Y, Kumar Sanjiv (2017) Depth profiling Li in electrode materials of lithium ion battery by 7Li(p, γ)8Be and 7Li(p, α)4He nuclear reactions. Nucl Instr Meth B 400:22–30

    Article  CAS  Google Scholar 

  24. Rauhala E, Keinonen J (1988) Ion beam analysis of oxygen distribution in superconducting YBa2Cu3Ox. Appl Phys Lett 52:1520–1522

    Article  CAS  Google Scholar 

  25. Habrioux A, Surblé S, Berger P, Khodja H, D’Affroux A, Mailley S, Gutel T, Patoux S (2012) Nuclear microanalysis of lithium dispersion in LiFePO4 based cathode materials. Nucl Instr Meth B 290:13–18

    Article  CAS  Google Scholar 

  26. Colaux JL, Jeynes C, Heasman KC, Gwilliam RM (2015) Certified ion implantation fluence by high accuracy RBS. Analyst 140:3251–3261

    Article  CAS  Google Scholar 

  27. Fehrenbacher G, Meckbach R, Paretzke HG (1996) Fast neutron detection with germanium detectors: computation of response functions for the 692 keV inelastic scattering peak. Nucl Instr Meth A 372:239–245

    Article  CAS  Google Scholar 

  28. Sunitha Y, Kumar Sanjiv (2017) 10B/11B isotopic ratio and atomic composition of boron carbide: determination by proton induced γ-ray emission and proton elastic backscattering spectrometry. Appl Radiat Isot 128:28–35

    Article  CAS  Google Scholar 

  29. Mateus R, Jesus AP, Braizinha B, Cruz J, Pinto JV, Ribeiro JP (2002) Proton-induced γ-ray analysis of lithium in thick samples. Nucl Instr Meth B 190:117–121

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the useful comments and suggestions of Dr. P. D. Naik, Associate Director, Chemistry Group, BARC and Dr. Sunil Jai Kumar, Head, NCCCM, Hyderabad. The authors thank Prof. C. Sudakar for providing LiFePO4 and LiFePO4/C samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Sunitha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunitha, Y., Kumar, S. 18O(p,p′γ)18O nuclear reaction in the determination of oxygen by proton induced γ-ray emission. J Radioanal Nucl Chem 314, 1803–1812 (2017). https://doi.org/10.1007/s10967-017-5575-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5575-5

Keywords

Navigation