Skip to main content
Log in

Natural radioactivity level in soils around Kolar Gold Fields, Kolar district, Karnataka, India

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The study on natural radioactivity level in the soil plays a significant role in health physics. The present study has been carried out with the aim of estimating activity concentration of radionuclides in soil samples collected at 30 places around Kolar Gold Fields, Kolar district using gamma ray spectrometry. Average values of activity concentration of 226Ra, 232Th and 40K in soil samples of the present study are 27.3 ± 1.8, 63.1 ± 2.5 and 818 ± 6 Bq kg−1, respectively. The average radium equivalent activity (Raeq), absorbed dose rate and annual effective dose have been calculated and compared with the referred safe values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ramachandran TV, Eappen KP, Mayya YS (2005) Background radiation exposure levels: Indian scenario. Int Congr Ser 1276:337–338

    Article  Google Scholar 

  2. ISO 18589-1:2005(ed); Measurement of radioactivity in the environment—Soil—Part 1: General guidelines and definitions, 18589-1

  3. Tufail M, Asghar M, Akram M, Javied S, Khan K, Mujahid SA (2013) Measurement of natural radioactivity in soil from Peshawar basin of Pakistan. J Radioanal Nucl Chem 298:1085–1096

    Article  CAS  Google Scholar 

  4. Belvermis M, Kılıc O, Cotuk Y, Topcuoglu S (2010) The effects of physicochemical properties on gamma emitting natural radionuclide levels in the soil profile of Istanbul. Environ Monit Assess 163:15–26

    Article  Google Scholar 

  5. Patra AC, Sahoo SK, Tripathi RM, Puranik VD (2013) Distribution of radionuclides in surface soils, Singhbhum Shear Zone, India and associated dose. Environ Monit Assess 185:7833–7843

    Article  CAS  Google Scholar 

  6. Flodin U, Fredriksson M, Persson B, Axelson O (1990) Acute myeloid leukemia and background radiation in an expanded case-referent study. Arch Environ Health 45(6):364–366

    Article  CAS  Google Scholar 

  7. Sannappa J, Chandrashekera MS, Sathish LA, Paramesh L, Venkataramaiah P (2003) Study of background radiation dose in Mysore city, Karnataka State, India. Radiat Meas 37:55–65

    Article  CAS  Google Scholar 

  8. Narayan KK, Krishnan DN, Subbaramu MC (1991) Population exposure to ionizing radiation in India. Indian Association for Radiation Protection (ISRP), ISRP (K) BR3, pp 1–63

  9. Kabir KA, Islam SM, Rahman M (2009) Distribution of radionuclides in surface soil and bottom sediment in the district of Jessori, Bangladesh and evaluation of radiation hazard. J Bangladesh Acad Sci 33(1):117–130

    CAS  Google Scholar 

  10. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2000) Sources and effects of ionizing radiation. Report to the General Assembly with Scientific Annexes. Vol. 1, Annex B: Exposure from natural radiation sources, United Nations

  11. Volchok HL, dc Planque G (1983) EML procedure manual, 26th edn. Environmental Measurement Laboratory, New York

    Google Scholar 

  12. Krishnan MS (1982) Geology of India and Burma, 6th edn. Batra Art Printers, New Delhi

    Google Scholar 

  13. IAEA/RCA (1989) Regional work on environmental sampling and measurement of radioactivity for monitoring purposes. Health Physics Division, BARC, Kalpakkam, p 85

    Google Scholar 

  14. Nambi KS, Bapat VN, David M, Sundaram VK, Sunta CM, Soman SD (1987) Country wide environmental radiation monitoring using thermo-luminescence. Radiat Prot Dosim 18(1):31–38

    CAS  Google Scholar 

  15. Megumi K, Oka T, Doi M, Tsujimoto T, Ishiyama T, Katsurayama K (1998) Relationship between the concentrations of natural radionuclides and mineral composition of the surface soil. Radiat Prot Dosim 24(1-4):69–72

    Article  Google Scholar 

  16. Ningappa C, Sannappa J, Karunakara N (2008) Study on radionuclides in granite quarries of Bangalore rural district, Karnataka, India. Radiat Prot Dosim 131(4):495–502

    Article  CAS  Google Scholar 

  17. Sannappa J, Ningappa C, Narasimha Prakash (2010) KN, Natural radioactivity levels in granite regions of Karnataka State. Indian J Pure Appl Phys 48:817–819

    CAS  Google Scholar 

  18. Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by products. Health Phys 48:87–95

    Article  CAS  Google Scholar 

  19. Al-Trabuls HA, Khater AEM, Habbani FI (2011) Radioactivity levels and radiological hazard indices at the Saudi coastline of the Gulf of Aqaba. Radiat Phys Chem 80:343–348

    Article  Google Scholar 

  20. Righi S, Bruzzi L (2006) Natural radioactivity and radon exhalation in building materials used in Italian dwellings. J Environ Radioact 88:158–170

    Article  CAS  Google Scholar 

  21. European Commission (1999) Radiological protection principles concerning the natural radioactivity of building materials. Radiation Protection 112, Directorate General Environment. Nuclear Safety and Civil Protection, European Commission

  22. Iqbal M, Tufail M, Mirza SM (2000) Measurement of natural radioactivity in marble found in Pakistan using a NaI (Tl) gamma-ray spectrometer. J Environ Radioact 51:255–265

    Article  CAS  Google Scholar 

  23. ICRP (2007) Publication103. Ann. ICRP 37(2-4)-F. The Recommendations of the International Commission on Radiological Protection

  24. Merdanoglu B, Altinsoy N (2006) Radioactivity concentrations and dose assessment for soil samples from Kestanbol granite area, Turkey. Radiat Prot Dosim 121:399–405

    Article  CAS  Google Scholar 

  25. Baeza A, Rio MD, Miro C, Paniagua M (1992) Natural radioactivity in soils of the province of Caceres (Spain). Radiat Prot Dosim 45(1–4):261–263

    Article  CAS  Google Scholar 

  26. Nafee SS, Al-Othmany D, Hamidalddin SHQ, Al- Zahrani JH, Alharbi WR, Barashed HM (2017) Measurement of gamma emitting radionuclides for assessment, environmental hazards of radiation in rock and soil samples of Shabwah and Hadramout regions, Yemen. J Geosci Environ Prot 5:66–75

    Google Scholar 

  27. Myrick TE, Berven BA, Haywood FF (1983) Determination of concentrations of selected radionuclides in surface soil in the US. Health Phys 45(3):631–642

    Article  CAS  Google Scholar 

  28. Steinhausler F, Lettner H (1992) Radiometric survey in Namibia. Radiat Prot Dosim 45:553–555

    Article  Google Scholar 

  29. Kansal S, Mehra R, Singh NP, Badhan K, Sonkawade RG (2010) Analysis and assessment of radiological risk in soil samples of Hisar district of Haryana, India. Indian J Pure Appl Phys 48:512–515

    CAS  Google Scholar 

  30. Sartandel SJ, Chinnaesakki S, Bara SV, Krishna NS, Vinod Kumar A, Tripathi RM (2014) Assessment of natural and fallout radioactivity in soil samples of Visakhapatnam. J Radioanal Nucl Chem 299:337–342

    Article  CAS  Google Scholar 

  31. Srilatha MC, Rangaswamy DR, Sannappa J (2015) Measurement of natural radioactivity and radiation hazard assessment in the soil samples of Ramanagara and Tumkur districts, Karnataka, India. J Radioanal Nucl Chem 303:993–1003

    Article  CAS  Google Scholar 

  32. National Environmental Protection Agency (1990) Nation wide survey of environmental radioactivity level in China (1983–1990). Report 90-S315-206 (The People’s Republic of China: NEPA)

  33. Ibrahim NM, Abd El Ghani AH, Shawky SM, Ashraf EM, Farouk MA (1993) Measurements of radioactivity levels in soil in the Nile delta and middle Egypt. Health Phys 64:620–627

    Article  Google Scholar 

  34. Dragovic S, Lj Jankovic, Onjia A (2006) Assessment of gamma dose rates from terrestrial exposure in Serbia and Montenegro. Radiat Prot Dosim 121(3):297–302

    Article  CAS  Google Scholar 

  35. Tzortzis M, Svoukis E, Tsertos H (2004) A comprehensive study of natural gamma radioactivity levels and associated dose rates from surface soils in Cyprus. Radiat Prot Dosim 109:217–224

    Article  CAS  Google Scholar 

  36. Taskin H, KaravusM TopuzogluA, HidirogluS Karahan G (2009) Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J Environ Radioact 100(1):49–53

    Article  CAS  Google Scholar 

  37. Malanca A, Gaidol L, Pessina V, Dallara G (1996) Distribution of 226Ra,232Th and 40K of Rio Grande do Norte (Brazil). J Environ Radioact 30(1):55–67

    Article  CAS  Google Scholar 

  38. Mohapatra S, Sahoo SK, Vinod Kumar A, Patra AC, Lenka P, Dubey JS, Thakur VK, Tripathi RM, Puranik VD (2013) Distribution of norm and 137Cs in soils of the Visakhapatnam region, Eastern India, and associated radiation dose. Radiat Prot Dosim 157(1):95–104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to Dr. Karnunakara, Professor, Centre for Advanced Research in Environmental Radioactivity (CARER), MangalaGangothri, Mangalore University, Mangaluru, Karnataka for providing HPGe detector facility to carryout theexperiment, Dr. M C Subbaramu, Ex Scientist, BARC, India for his valuable suggestions and Dr. P Raghavendra, Associate professor of English, GFGC, Tumkur, Karnataka for sparing his valuable time in correcting grammatical mistakes in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ningappa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, K.U., Ningappa, C. & Sannappa, J. Natural radioactivity level in soils around Kolar Gold Fields, Kolar district, Karnataka, India. J Radioanal Nucl Chem 314, 2037–2045 (2017). https://doi.org/10.1007/s10967-017-5545-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5545-y

Keywords

Navigation