Skip to main content
Log in

Production of 89Sr-doped CdSe QDs@PAMAM as the radioanalytical-fluorescent indicator of renal injury and the preliminary application in diabetic nephropathy model

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

An indicator with double tracers has been developed so as to improve the accuracy and stability of quantitative analysis of renal injury. The indicator based on mono-dispersed 89Sr-doped CdSe QDs@PAMAM with tight core–shell structure and controllable size was synthesized. When intravenously injected in diabetic nephropathy models, the measurements of indicators in urine could effectively reflect the level of renal injury via both radioanalytical and florescent method, and comparable results were obtained with the creatinine in blood. The double trackable indicator of renal injury was capable to indirectly reflect the renal injury with improved accuracy and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goftman VV, Aubert T, Ginste DV, Van Deun R, Beloglazova NV, Hens Z, De Saeger S, Goryacheva IY (2016) Synthesis, modification, bioconjugation of silica coated fluorescent quantum dots and their application for mycotoxin detection. Biosens Bioelectron 79:476–481

    Article  CAS  Google Scholar 

  2. Onoshima D, Yukawa H, Baba Y (2015) Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine. Adv Drug Deliv Rev 95:2–14

    Article  CAS  Google Scholar 

  3. Zhao Y, Liu S, Li Y, Jiang W, Chang Y, Pan S, Fang X, Wang YA, Wang J (2010) Synthesis and grafting of folate-PEG-PAMAM conjugates onto quantum dots for selective targeting of folate-receptor-positive tumor cells. J Colloid Interface Sci 350:44–50

    Article  CAS  Google Scholar 

  4. Obonyo O, Fisher E, Edwards M, Douroumis D (2010) Quantum dots synthesis and biological applications as imaging and drug delivery systems. Crit Rev Biotechnol 30:283–301

    Article  CAS  Google Scholar 

  5. Erathodiyil N, Ying JY (2011) Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res 44:925–935

    Article  CAS  Google Scholar 

  6. Tomczak N, Liu R, Vancso JG (2013) Polymer-coated quantum dots. Nanoscale 5:12018–12032

    Article  CAS  Google Scholar 

  7. Bahadir EB, Sezginturk MK (2016) Poly(amidoamine) (PAMAM): an emerging material for electrochemical bio(sensing) applications. Talanta 148:427–438

    Article  CAS  Google Scholar 

  8. Pettit MW, Griffiths P, Ferruti P, Richardson SC (2011) Poly(amidoamine) polymers: soluble linear amphiphilic drug-delivery systems for genes, proteins and oligonucleotides. Ther Deliv 2:907–917

    Article  CAS  Google Scholar 

  9. Roessler BJ, Bielinska AU, Janczak K, Lee I, Baker JR Jr (2001) Substituted beta-cyclodextrins interact with PAMAM dendrimer-DNA complexes and modify transfection efficiency. Biochem Biophys Res Commun 283:124–129

    Article  CAS  Google Scholar 

  10. Spyropoulos-Antonakakis N, Sarantopoulou E, Trohopoulos PN, Stefi AL, Kollia Z, Gavriil VE, Bourkoula A, Petrou PS, Kakabakos S, Semashko VV, Nizamutdinov AS, Cefalas AC (2015) Selective aggregation of PAMAM dendrimer nanocarriers and PAMAM/ZnPc nanodrugs on human atheromatous carotid tissues: a photodynamic therapy for atherosclerosis. Nanoscale Res Lett 10:210

    Article  Google Scholar 

  11. Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmüller A, Weller H (2002) Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J Phys Chem B 106:7177–7185

    Article  CAS  Google Scholar 

  12. Shavel A, Gaponik N, Eychmuller A (2006) Factors governing the quality of aqueous CdTe nanocrystals: calculations and experiment. J Phys Chem B 110:19280–19284

    Article  CAS  Google Scholar 

  13. Tomalia DA, Baker H, Dewald JR, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17:117–132

    Article  CAS  Google Scholar 

  14. Tomalia DA, Naylor AM, Gaddard WA (1990) Starburst dentrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed Engl 29:138–175

    Article  Google Scholar 

  15. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  16. Wang Y, Li Q, Sun SZ (2006) Effects of benazepril on renalfunction and kidney expression of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in diabetic rats. Chin Med J 119:814–821

    Google Scholar 

  17. Talapin DV, Rogach AL, Shevchenko EV, Kornowski A, Haase M, Weller H (2002) Dynamic distribution of growth rates within the ensembles of colloidal II-VI and III-V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. J Am Chem Soc 124:5782–5790

    Article  CAS  Google Scholar 

  18. Sharma SN, Pillai ZS, Kamat PV (2003) Photoinduced charge transfer between CdSe quantum dots and p-phenylenediamine. J Phys Chem B 107:10088–10093

    Article  CAS  Google Scholar 

  19. SalmanOgli A (2011) Nanobio applications of quantum dots in cancer: imaging, sensing, and targeting. Cancer Nanotechnol 2:1–19

    Article  CAS  Google Scholar 

  20. Ehlerding EB, Chen F, Cai W (2016) Biodegradable and renal clearable inorganic nanoparticles. Adv Sci 3:1500223

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded in part by the Programs of Science and Technology Bureau of Tangshan, Grant Number [10130265a, 05134601A-1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, X. & Liu, X. Production of 89Sr-doped CdSe QDs@PAMAM as the radioanalytical-fluorescent indicator of renal injury and the preliminary application in diabetic nephropathy model. J Radioanal Nucl Chem 314, 1701–1706 (2017). https://doi.org/10.1007/s10967-017-5520-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5520-7

Keywords

Navigation