Skip to main content
Log in

Determination of 93Zr in nuclear power plant wastes

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A radioanalytical method (based on separation using UTEVA columns and ICP-MS measurement) has been used for determination of 93Zr in 37 nuclear power plant samples. As 93Nb might affect the detection of 93Zr, Monte Carlo activation model was used to calculate the expected 93Zr/natZr mass ratio, which was compared to measured ones. It was found, that a decontamination factor of 103 is sufficient to get a measurement uncertainty of less than 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang J, Zhang S, Ding Y, Shu F, Zhang J (2010) A new value of 93Zr half-life. Radiochim Acta 98(2):59–63. doi:10.1524/ract.2010.1678

    Article  CAS  Google Scholar 

  2. Cassette P, Chartier F, Isnard H, Fréechou C, Laszak I, Degros JP, Bé MM, Lépy MC, Tartes I (2010) Determination of 93Zr decay scheme and half-life. Appl Radiat Isot 68:122–130. doi:10.1016/j.apradiso.2009.08.011

    Article  CAS  Google Scholar 

  3. Erdtmann G, Soyka W (1975) The gamma-ray lines of radionuclides, ordered by atomic and mass number. Part II. Z = 58 − 100 (Cerium-Fermium). J Radioanal Chem 27:137–286. doi:10.1007/BF02517457

    Article  CAS  Google Scholar 

  4. Espartero AG, Suárez JA, Rodrígez M, Pina G (2002) Radiochemical analysis of 93Zr. Appl Radiat Isot 56:41–46. doi:10.1016/S0969-8043(01)00164-6

    Article  CAS  Google Scholar 

  5. Excoffier E, Bienvenu P, Combes C, Pontremoli S, Delteil N, Ferrini R (2000) Determination of 93Zr, 107Pd and 135Cs in zircaloy hulls—analytical development on inactive samples. In: Scientific research on the back-end of the fuel cycle for the 21 century (Atalante 2000), Avignon, France

  6. Chartier F, Isnard H, Degros JP, Faure AL, Fréchou C (2008) Application of the isotope dilution technique for 93Zr determination in an irradiated cladding material by multiple collector-inductively coupled plasma mass spectrometry. Int J Mass Spectrom 270:127–133. doi:10.1016/j.ijms.2007.12.005

    Article  CAS  Google Scholar 

  7. Remenec B (2008) Determination of low energy gamma (129I) and beta (151Sm, 93Zr) emitting radionuclides in radwaste from NPP A1 Jaslovske Bohunice. In: Seventh International Conference on Nuclear and Radiochemistry (NRC7), Budapest

  8. Bombard A (2005) Dosage de radionucléides à vie longue, 93Zr, 93Mo et 94Nb, dans des échantillons issus de l’industrie nucléaire. Thesis, University of Nantes, Nantes

  9. Dulanská S, Remenec B, Gardonová V, Mátel L (2012) Determination of 93Zr in radioactive waste using ion exchange techniques. J Radioanal Nucl Chem 293:635–640. doi:10.1007/s10967-012-1807-x

    Article  Google Scholar 

  10. Dulanská S, Bilohusˇcˇin J, Remenec B, Mátel L, Silliková V (2016) Sequential determination of 93Zr, 94Nb, 99Tc and 126Sn in radioactive waste using anion exchange resin and TEVA® Resin. J Radioanal Nucl Chem 309:685–689. doi:10.1007/s10967-015-4613-4

    Google Scholar 

  11. Puech P (1998) Détermination des radionucléides zirconium 93 et molybdène 93 dans des effluents de retraitement des combustibles irradiés. Thesis, Univ. Paris, Paris

  12. Shimada A, Kameo Y (2016) Development of an extraction chromatography method for the analysis of 93Zr, 94Nb, and 93Mo in radioactive contaminated water generated at the Fukushima Daiichi Nuclear Power Station. J Radioanal Nucl Chem 310:1317–1323. doi:10.1007/s10967-016-5008-x

    Article  CAS  Google Scholar 

  13. Oliveira TC, Monteiro RPG, Oliveira AH (2011) A selective separation method for 93Zr in radiochemical analysis of low and intermediate level wastes from nuclear power plants. J Radioanal Nucl Chem 289:497–501. doi:10.1007/s10967-011-1097-8

    Article  CAS  Google Scholar 

  14. Oliveira TC, Monteiro RPG, Kastner GF, Bessueille-Barbier F, Oliveira AH (2014) Radiochemical methodologies applied to determination of zirconium isotopes in low-level waste samples from nuclear power plants. J Radioanal Nucl Chem 302(1):41–47. doi:10.1007/s10967-014-3283-y

    Article  CAS  Google Scholar 

  15. Alfonso MC, Bennett ME, Folden CM III (2016) Extraction chromatography of the Rf homologs, Zr and Hf, using TEVA and UTEVA resins in HCl, HNO3, and H2SO4 media. J Radioanal Nucl Chem 307:1529–1536. doi:10.1007/s10967-015-4256-5

    Article  CAS  Google Scholar 

  16. Maxwell SL, Jones VD (1998) Rapid separation methods to characterize actinides and metallic impurities in plutonium scrap materials at SRS. In: 39th annual meeting—institute of nuclear materials management, Naples

  17. Makishima A, Zhu XK, Belshaw NS, O’Nions RK (2002) Separation of titanium from silicates for isotopic ratio determination using multiple collector ICP-MS. J Anal At Spectrom 17(10):1290–1294. doi:10.1039/b204349a

    Article  CAS  Google Scholar 

  18. Le Fevre B, Pin C (2001) An extraction chromatography method for Hf separation prior to isotopic analysis using multiple collection ICP-mass spectrometry. Anal Chem 73:2453–2460. doi:10.1021/ac001237g

    Article  Google Scholar 

  19. Le Fevre B, Pin C (2002) Determination of Zr, Hf, Th and U by isotope dilution and inductively coupled plasma-quadrupole mass spectrometry after concomitant separation using extraction chromatography. Geostand Newsl 26(2):161–170. doi:10.1111/j.1751-908X.2002.tb00884.x

    Article  Google Scholar 

  20. Remenec B, Dulanská S, Mátel L, Bilohuscin J (2014) Development of a method for the determination of 93Zr and 94Nb in radioactive waste using TEVA resin. J Radioanal Nucl Chem 302:117–122. doi:10.1007/s10967-014-3318-4

    Article  CAS  Google Scholar 

  21. Osváth Sz, Vajda N, Stefánka Zs, Széles É, Molnár Zs (2011) Determination of 93Zr and 237Np in nuclear power plant wastes. J Radioanal Nucl Chem 287(2):459–463. doi:10.1007/s10967-010-0886-9

    Article  Google Scholar 

  22. IAEA, International Atomic Energy Agency (2009) Determination and use of scaling factors for waste characterization in nuclear power plants. Nuclear Energy Series No. NW-T-1.18. Vienna

  23. Osváth Sz, Vajda N, Molnár Zs, Széles É, Stefánka Zs (2010) Determination of 237Np, 93Zr and other long-lived radionuclides in medium and low-level radioactive waste samples. J Radioanal Nucl Chem 286(3):675–680. doi:10.1007/s10967-010-0738-7

    Article  Google Scholar 

  24. Lu W, Anderson T, Bowers M, Bauder W, Collon P, Kutschera W, Kashiv Y, Lachner J, Martschini M, Ostdiek K, Robertson D, Schmitt C, Skulski M, Steier P (2015) Zr/Nb isobar separation experiment for future 93Zr AMS measurement. Nucl Instrum Meth B 361:491–495. doi:10.1016/j.nimb.2015.01.071

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The corresponding author is thankful to Réka Répánszki for her kind support, useful tips and encouraging remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szabolcs Osváth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 214 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osváth, S., Vajda, N., Molnár, Z. et al. Determination of 93Zr in nuclear power plant wastes. J Radioanal Nucl Chem 314, 31–38 (2017). https://doi.org/10.1007/s10967-017-5382-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5382-z

Keywords

Navigation