Skip to main content
Log in

An assessment study in the determination of chemical elements in sediments and fish in the Zarka River and King Talal Dam, Jordan

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 07 September 2017

This article has been updated

Abstract

Concentrations of several trace elements were detected in the sediments at King Talal Dam and at different locations along the Zarka River, Jordan. Chemical elements were also detected in the edible part of common fish types existing at the dam. Elemental concentrations were determined using neutron activation analysis (NAA). The results showed that the concentration of chemical elements in the sediments decreases as one moves away from the Khirbet Al Samra waste water treatment plant. The results also revealed that most of the elements had higher concentrations in Tilapia fish compared to the Catfish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 07 September 2017

    An erratum to this article has been published.

References

  1. Fandi KG, Qudsieh IY, Muyibi SA, Massadeh M (2009) Water pollution status assessment of King Talal Dam, Jordan. Adv Environ Biol 3:92–100

    Google Scholar 

  2. Al-Wer I (2009) The Zarqa River rehabilitation and sustainable management. A Master’s thesis submitted to the Department of Land and Water Resources Engineering, Royal Institute of Technology (KTH). Stockholm, Sweden

  3. Adomako D, Nyarko BJB, Dampare SB et al (2008) Determination of toxic elements in waters and sediments from River Subin in the Ashanti Region of Ghana. Environ Monit Assess 141:165–175. doi:10.1007/s10661-007-9885-x

    Article  CAS  Google Scholar 

  4. Wright P, Mason CF (1999) Spatial and seasonal variation in heavy metals in the sediments and biota of two adjacent estuaries, the orwell and the stour, in eastern England. Sci Total Environ 226:139–156. doi:10.1016/S0048-9697(98)00383-0

    Article  CAS  Google Scholar 

  5. Abderahman N, Abu-Rukah YH (2006) An assessment study of heavy metal distribution within soil in upper course of Zarqa River Basin/Jordan. Environ Geol 49:1116–1124. doi:10.1007/s00254-005-0154-4

    Article  CAS  Google Scholar 

  6. Aljundi J (2000) Determination of trace elements and heavy metals in the Zarka River sediments by instrumental neutron activation analysis. Nucl Instrum Methods Phys Res Sect B 170:180–186

    Article  CAS  Google Scholar 

  7. Ayyasamy PM, Chun S, Lee S (2009) Desorption and dissolution of heavy metals from contaminated soil using Shewanella sp. (HN-41) amended with various carbon sources and synthetic soil organic matters. J Hazard Mater 161:1095–1102. doi:10.1016/j.jhazmat.2008.04.063

    Article  CAS  Google Scholar 

  8. Baljinnyam N, Frontasyeva MV, Aleksiayenak YV (2014) INAA for determination of trace elements in bottom sediments of the Selenga River Basin in Mongolia. Phys Part Nucl Lett 11:199–208. doi:10.1134/S1547477114020149

    Article  CAS  Google Scholar 

  9. Prange A, Knöchel A, Michaelis W (1985) Multi-element determination of dissolved heavy metal traces in sea water by total-reflection X-ray fluorescence spectrometry. Anal Chim Acta 172:79–100. doi:10.1016/S0003-2670(00)82596-9

    Article  CAS  Google Scholar 

  10. Meche A, Martins MC, Lofrano BESN et al (2010) Determination of heavy metals by inductively coupled plasma-optical emission spectrometry in fish from the Piracicaba River in Southern Brazil. Microchem J 94:171–174. doi:10.1016/j.microc.2009.10.018

    Article  CAS  Google Scholar 

  11. Moor C, Lymberopoulou T, Dietrich VJ (2001) Determination of heavy metals in soils, sediments and geological materials by ICP-AES and ICP-MS. Mikrochim Acta 136:123–128. doi:10.1007/s006040170041

    Article  CAS  Google Scholar 

  12. De Sena E, Landsberger S, Peña JT, Wisseman S (1995) Analysis of ancient pottery from the Palatine Hill in Rome. J Radioanal Nucl Chem Artic 196:223–234. doi:10.1007/BF02038040

    Article  Google Scholar 

  13. Pillay VV (2013) Modern medical toxicology. vol. 4. Jaypee Brothers Medical Publishers (P) Ltd, New Delhi

    Book  Google Scholar 

  14. Ittipongse A, Fungklin R (2016) Determine of heavy metal contents in fresh vegetable by using nuclear activation analysis. SNRU J Sci Technol 8:187–191. doi:10.14456/snrujst.2016.26

    Google Scholar 

  15. ISO 13528 (2005) Statistical methods for use in proficiency testing by interlaboratory comparisons. ISO, Genève

    Google Scholar 

  16. Landsberger S, Cizek WD, Campbell RH (1994) NADA92: an automated, user-friendly program for neutron activation data analysis. J Radioanal Nucl Chem Artic 180:55–63. doi:10.1007/BF02039903

    Article  CAS  Google Scholar 

  17. Ahmed YA, Landsberger S, O’Kelly DJ et al (2010) Compton suppression method and epithermal NAA in the determination of nutrients and heavy metals in nigerian food and beverages. Appl Radiat Isot 68:1909–1914. doi:10.1016/j.apradiso.2010.04.016

    Article  CAS  Google Scholar 

  18. Ahmad MK, Islam S, Rahman MS et al (2010) Heavy metals in water, sediment and some fishes of Burganga River, Bangladesh. Int J Environ Resarch 4:321–332

    CAS  Google Scholar 

  19. Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  20. US Department of Health and Human Services (2004) Toxicological profile for strontium. Public Health Service Agency for Toxic Substances and Disease Registry, Atlanta

    Google Scholar 

  21. Byerrum R (1991) Vanadium. Metals and their compounds in the environment VCH, Weinheim. Wiley, Cambridge, pp 1289–1297

    Google Scholar 

  22. Heath A (1995) Water pollution and fish physiology, 2nd edn. Lewis Publishers, Boca Raton

    Google Scholar 

  23. Millour S, Noël L, Chekri R et al (2012) Strontium, silver, tin, iron, tellurium, gallium, germanium, barium and vanadium levels in foodstuffs from the second french total diet study. J Food Compos Anal 25:108–129. doi:10.1016/j.jfca.2011.10.004

    Article  CAS  Google Scholar 

  24. Jordan standards and metrology organization (2002). Fish and fish products—fresh chilled fish (1481/2002)

  25. World Health Organisation (1996) Background document for development of WHO guidelines for drinking-water quality

  26. Porea TJ, Belmont JW, Mahoney DH (2000) Zinc-induced anemia and neutropenia in an adolescent. J Pediatr 136:688–690. doi:10.1067/mpd.2000.103355

    Article  CAS  Google Scholar 

  27. Brown MA, Joseph VT, Orth GL, Cova P (1964) Food poisoning involving zinc contamination. Arch Environ Health 8:657–660. doi:10.1080/00039896.1964.10663736

    Article  CAS  Google Scholar 

  28. Kalyoncu L, Kalyoncu H, Arslan G (2012) Determination of heavy metals and metals levels in five fish species from Işikli Dam Lake and Karacaören Dam Lake (Turkey). Environ Monit Assess 184:2231–2235. doi:10.1007/s10661-011-2112-9

    Article  CAS  Google Scholar 

  29. Muhammad BG, Jaafar MS, Rahman AA, Ingawa FA (2012) Determination of radioactive elements and heavy metals in sediments and soil from domestic water sources in Northern Peninsular Malaysia. Environ Monit Assess 184:5043–5049. doi:10.1007/s10661-011-2320-3

    Article  CAS  Google Scholar 

  30. Busamongkol A, Srinuttrakul W, Kewsuwan P (2014) Evaluation of toxic and trace metals in Thai fish by INAA. Energy Procedia 56:80–84. doi:10.1016/j.egypro.2014.07.134

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Mr. Taylor Glover from the nuclear engineering department at the University of Texas at Austin for his help during the irradiation experiments. The authors wish also to thank Dr. Muntaser Shraideh from the industrial engineering department at Jordan University of Science and Technology for his great help in the statistical analysis. Finally, the authors wish also to thank the entire NETL technical team for their support and assistance throughout the neutron activation analysis in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Alsabbagh.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s10967-017-5430-8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsabbagh, A., Khalayleh, L., Dbissi, M. et al. An assessment study in the determination of chemical elements in sediments and fish in the Zarka River and King Talal Dam, Jordan. J Radioanal Nucl Chem 314, 141–147 (2017). https://doi.org/10.1007/s10967-017-5355-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5355-2

Keywords

Navigation