Phosphorylation of graphehe oxide to improve adsorption of U(VI) from aquaeous solutions

Abstract

The graphene oxide (GO) was functionalized with phosphate groups and applied as an effective adsorbent for the removal of uranium from aqueous solutions under various environmental conditions (e.g., solution pH, ions strength, contact time and temperature). Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy have confirmed that the phosphorylate group was successfully introduced on the surface of GO. The adsorption experiments indicated that the monolayer adsorption capacity has been increased from 249.38 mg/g (GO) to 336.70 mg/g [phosphorylated graphene oxide (PGO)] calculated by Langmuir model. Moreover, the adsorptive selectivity coefficients S U(VI)/M(x) increase from 42.43 to 51.96% after functionalized with phosphate group. The mechanism of U(VI) absorbed on PGO surface was dominated by surface complexation and electrostatic interaction. The results demonstrate that PGO will be a promising material for the efficient removal of U(VI) in the environment pollution remediation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Wang Y, Zhang Z, Liu Y, Cao X, Liu Y, Li Q (2012) Adsorption of U (VI) from aqueous solution by the carboxyl-mesoporous carbon. Chem Eng J 198:246–253

    Article  Google Scholar 

  2. 2.

    Singh H, Mishra SL, Vijayalakshmi R (2004) Uranium recovery from phosphoric acid by solvent extraction using a synergistic mixture of di-nonyl phenyl phosphoric acid and tri-n-butyl phosphate. Hydrometallurgy 73:63–70

    CAS  Article  Google Scholar 

  3. 3.

    Kulkarni PS, Mukhopadhyay S, Bellary MP, Ghosh SK (2002) Studies on membrane stability and recovery of uranium (VI) from aqueous solutions using a liquid emulsion membrane process. Hydrometallurgy 64:49–58

    CAS  Article  Google Scholar 

  4. 4.

    Ganesh R, Robinson KG, Chu L, Kucsmas D, Reed GD (1999) Reductive precipitation of uranium by Desulfovibrio desulfuricans: evaluation of cocontaminant effects and selective removal. Water Res 33:3447–3458

    CAS  Article  Google Scholar 

  5. 5.

    Ladeira A, Morais CA (2005) Uranium recovery from industrial effluent by ion exchange—column experiments. Miner Eng 18:1337–1340

    CAS  Article  Google Scholar 

  6. 6.

    Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58:224–231

    CAS  Article  Google Scholar 

  7. 7.

    Caccin M, Giacobbo F, Da Ros M, Besozzi L, Mariani M (2013) Adsorption of uranium, cesium and strontium onto coconut shell activated carbon. J Radioanal Nucl Chem 297:9–18

    CAS  Article  Google Scholar 

  8. 8.

    Abollino O, Aceto M, Malandrino M, Sarzanini C, Mentasti E (2003) Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances. Water Res 37:1619–1627

    CAS  Article  Google Scholar 

  9. 9.

    Oliveira LC, Petkowicz DI, Smaniotto A, Pergher SB (2004) Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water. Water Res 38:3699–3704

    CAS  Article  Google Scholar 

  10. 10.

    Zhang G, Qu J, Liu H, Liu R, Li G (2007) Removal mechanism of As (III) by a novel Fe-Mn binary oxide adsorbent: oxidation and sorption. Environ Sci Technol 41:4613–4619

    CAS  Article  Google Scholar 

  11. 11.

    Robinson T, Chandran B, Nigam P (2002) Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Res 36:2824–2830

    CAS  Article  Google Scholar 

  12. 12.

    Loukidou MX, Matis KA, Zouboulis AI, Liakopoulou-Kyriakidou M (2003) Removal of As (V) from wastewaters by chemically modified fungal biomass. Water Res 37:4544–4552

    CAS  Article  Google Scholar 

  13. 13.

    Atia AA, Donia AM, Abou-El-Enein SA, Yousif AM (2003) Studies on uptake behaviour of copper (II) and lead (II) by amine chelating resins with different textural properties. Sep Purif Technol 33:295–301

    CAS  Article  Google Scholar 

  14. 14.

    Zhao G, Li J, Ren X, Chen C, Wang X (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45:10454–10462

    CAS  Article  Google Scholar 

  15. 15.

    Romanchuk AY, Slesarev AS, Kalmykov SN, Kosynkin DV, Tour JM (2013) Graphene oxide for effective radionuclide removal. Phys Chem Chem Phys 15:2321–2327

    CAS  Article  Google Scholar 

  16. 16.

    Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    CAS  Article  Google Scholar 

  17. 17.

    Chang Y, Ren C, Qu J, Chen X (2012) Preparation and characterization of Fe 3 O 4/graphene nanocomposite and investigation of its adsorption performance for aniline and p-chloroaniline. Appl Surf Sci 261:504–509

    CAS  Article  Google Scholar 

  18. 18.

    Liu X, Li J, Wang X, Chen C, Wang X (2015) High performance of phosphate-functionalized graphene oxide for the selective adsorption of U (VI) from acidic solution. J Nucl Mater 466:56–64

    CAS  Article  Google Scholar 

  19. 19.

    Yuan L, Liu Y, Shi W, Lv Y, Lan J, Zhao Y, Chai Z (2011) High performance of phosphonate-functionalized mesoporous silica for U (VI) sorption from aqueous solution. Dalton Trans 40:7446–7453

    CAS  Article  Google Scholar 

  20. 20.

    Zou Y, Cao X, Luo X, Liu Y, Hua R, Liu Y, Zhang Z (2015) Recycle of U (VI) from aqueous solution by situ phosphorylation mesoporous carbon. J Radioanal Nucl Chem 306:515–525

    CAS  Article  Google Scholar 

  21. 21.

    Mayes RT, Fulvio PF, Ma Z, Dai S (2011) Phosphorylated mesoporous carbon as a solid acid catalyst. Phys Chem Chem Phys 13:2492–2494

    CAS  Article  Google Scholar 

  22. 22.

    Wang L, Dong X, Jiang H, Li G, Zhang M (2014) Phosphorylated ordered mesoporous carbon as a novel solid acid catalyst for the esterification of oleic acid. Catal Commun 56:164–167

    CAS  Article  Google Scholar 

  23. 23.

    Goods JB, Sydlik SA, Walish JJ, Swager TM (2014) Phosphate functionalized graphene with tunable mechanical properties. Adv Mater 26:718–723

    CAS  Article  Google Scholar 

  24. 24.

    Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482

    CAS  Article  Google Scholar 

  25. 25.

    Marczenko Z (1975) Spectrophotometric determination of elements. Wiley, E. Horwood

    Google Scholar 

  26. 26.

    Zhao D, Wang X, Yang S, Guo Z, Sheng G (2012) Impact of water quality parameters on the sorption of U (VI) onto hematite. J Environ Radioact 103:20–29

    CAS  Article  Google Scholar 

  27. 27.

    Stankovich S, Piner RD, Nguyen ST, Ruoff RS (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44:3342–3347

    CAS  Article  Google Scholar 

  28. 28.

    Edwards JC, Thiel CY, Benac B, Knifton JF (1998) Solid-state NMR and FT-IR investigation of 12-tungs to phosphoric acid on TiO2. Catal Lett 51:77–83

    CAS  Article  Google Scholar 

  29. 29.

    Johns JE, Hersam MC (2012) Atomic covalent functionalization of graphene. Acc Chem Res 46:77–86

    Article  Google Scholar 

  30. 30.

    Yan H, Nguyen HH (2015) Distributed space time coding for bit-interleaved coded modulation in two-way relaying communications. In: IEEE global communications conference (GLOBECOM), pp 1–6

  31. 31.

    Song W, Wang X, Wang Q, Shao D, Wang X (2015) Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides. Phys Chem Chem Phys 17:398–406

    CAS  Article  Google Scholar 

  32. 32.

    Bayramoğlu G, Çelik G, Arica MY (2006) Studies on accumulation of uranium by fungus Lentinus sajor-caju. J Hazard Mater 136:345–353

    Article  Google Scholar 

  33. 33.

    Liu Y, Yuan L, Yuan Y, Lan J, Li Z, Feng Y, Zhao Y, Chai Z, Shi W (2012) A high efficient sorption of U (VI) from aqueous solution using amino-functionalized SBA-15. J Radioanal Nucl Chem 292:803–810

    CAS  Article  Google Scholar 

  34. 34.

    Li Z, Chen F, Yuan L, Liu Y, Zhao Y, Chai Z, Shi W (2012) Uranium (VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chem Eng J 210:539–546

    CAS  Article  Google Scholar 

  35. 35.

    Borah D, Satokawa S, Kato S, Kojima T (2009) Sorption of As (V) from aqueous solution using acid modified carbon black. J Hazard Mater 162:1269–1277

    CAS  Article  Google Scholar 

  36. 36.

    Zhao Y, Liu C, Feng M, Chen Z, Li S, Tian G, Wang L, Huang J, Li S (2010) Solid phase extraction of uranium (VI) onto benzoylthiourea-anchored activated carbon. J Hazard Mater 176:119–124

    CAS  Article  Google Scholar 

  37. 37.

    Başar CA (2006) Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot. J Hazard Mater 135:232–241

    Article  Google Scholar 

  38. 38.

    Koban A, Bernhard G (2004) Complexation of uranium(VI) with glycerol 1-phosphate. Polyhedron 23:1793–1797

    CAS  Article  Google Scholar 

  39. 39.

    Dong Z, Qiu Y, Dai Y, Cao X, Wang L, Wang P, Lai Z, Zhang W, Zhang Z, Liu Y, Le Z (2016) Removal of U (VI) from aqueous media by hydrothermal cross-linking chitosan with phosphate group. J Radioanal Nucl Chem 309:1217–1226

    CAS  Article  Google Scholar 

  40. 40.

    Yu X, Liu Y, Zhou Z, Xiong G, Cao X, Li M, Zhang Z (2014) Adsorptive removal of U (VI) from aqueous solution by hydrothermal carbon spheres with phosphate group. J Radioanal Nucl Chem 300:1235–1244

    CAS  Article  Google Scholar 

  41. 41.

    Zhou L, Huang Z, Luo T, Jia Y, Liu Z, Adesina AA (2015) Biosorption of uranium (VI) from aqueous solution using phosphate-modified pine wood sawdust. J Radioanal Nucl Chem 303:1917–1925

    CAS  Google Scholar 

  42. 42.

    Shao D, Hou G, Li J, Wen T, Ren X, Wang X (2014) PANI/GO as a super adsorbent for the selective adsorption of uranium (VI). Chem Eng J 255:604–612

    CAS  Article  Google Scholar 

  43. 43.

    Liu X, Huang Y, Duan S, Wang Y, Li J, Chen Y, Hayat T, Wang X (2016) Graphene oxides with different oxidation degrees for Co (II) ion pollution management. Chem Eng J 302:763–772

    CAS  Article  Google Scholar 

  44. 44.

    Liu X, Wang X, Li J, Wang X (2016) Ozonated graphene oxides as high efficient sorbents for Sr (II) and U (VI) removal from aqueous solutions. Sci China Chem 59:869–877

    CAS  Article  Google Scholar 

  45. 45.

    Wang J, Deng B, Chen H, Wang X, Zheng J (2009) Removal of aqueous Hg(II) by polyaniline: sorption characteristics and mechanisms. Environ Sci Technol 43:5223–5228

    CAS  Article  Google Scholar 

  46. 46.

    Kowal-Fouchard A, Drot R, Simoni E, Ehrhardt JJ (2004) Use of spectroscopic techniques for uranium (VI)/montmorillonite interaction modeling. Environ Sci Technol 38:1399–1407

    CAS  Article  Google Scholar 

  47. 47.

    Zhao Y, Li J, Zhang S, Chen H, Shao D (2013) Efficient enrichment of uranium (VI) on amidoximated magnetite/graphene oxide composites. RSC Adv 3:18952–18959

    CAS  Article  Google Scholar 

  48. 48.

    Wang Y, Liu X, Huang Y, Hayat T, Alsaedi A, Li J (2017) Interaction mechanisms of U (VI) and graphene oxide from the perspective of particle size distribution. J Radioanal Nucl Chem 311:209–217

    CAS  Article  Google Scholar 

  49. 49.

    Sun Y, Yang S, Chen Y, Ding C, Cheng W, Wang X (2015) Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study. Environ Sci Technol 49:4255–4262

    CAS  Article  Google Scholar 

  50. 50.

    Sureshkumar MK, Das D, Mallia MB, Gupta PC (2010) Adsorption of uranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads. J Hazard Mater 184:65–72

    CAS  Article  Google Scholar 

  51. 51.

    Yuan D, Xiong X, Chen L, Lv Y, Wang Y, Yuan L, Liao S, Zhang Q (2016) Removal of uranium from aqueous solution by phosphate functionalized superparamagnetic polymer microspheres Fe3O4/P (GMA-AA-MMA). J Radioanal Nucl Chem 309:729–741

    CAS  Article  Google Scholar 

  52. 52.

    Chi F, Wang X, Xiong J, Hu S (2013) Polyvinyl alcohol fibers with functional phosphonic acid group: synthesis and adsorption of uranyl (VI) ions in aqueous solutions. J Radioanal Nucl Chem 296:1331–1340

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21301028, 11475044, 41461070, 21561002), the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT13054), the Science & Technology Support Program of Jiangxi Province (Grant Nos. 20141BBG70001, 20151BBG70010), the Advanced Science & Technology Innovation Team Program of Jiangxi Province (Grant No. 20142BCB24006), and the Innovation Team Program of Jiangxi Provincial Department of Science and Technology (Grant No. 2014BCB24006).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhibin Zhang or Yunhai Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Wang, Y., Zhao, W. et al. Phosphorylation of graphehe oxide to improve adsorption of U(VI) from aquaeous solutions. J Radioanal Nucl Chem 313, 175–189 (2017). https://doi.org/10.1007/s10967-017-5274-2

Download citation

Keywords

  • Uranium
  • Adsorption
  • Graphene oxide
  • Phosphorylation