Skip to main content
Log in

Simultaneous determination of low Z elements in barium borosilicate glass samples by in situ current normalized particle induced gamma-ray emission methods

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Particle induced gamma-ray emission (PIGE) method using 4 MeV proton beam was utilized to analyze two types of barium borosilicate glass (BaBSG) samples for quantification of concentrations of low Z elements. The in situ current normalization method was applied in the analysis of eight samples containing varying concentration of F along with Si, B and Na. Charge normalized PIGE method was applied to determine concentrations of above low Z elements including Li and Al in samples having simulated nuclear waste from reprocessing of thoria spent fuel. Synthetic samples and NIST SRMs were used for method validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kakodkar A (2001) Shaping the third stage of Indian Nuclear Power Programme. In: 12th Annual Conference of Indian Nuclear Society (INSAC-2001), Indore, India, 10–12 Oct 2001

  2. Balakrishnan K, Kakodkar A (1994) Optimization of the initial fuel loading of the Indian PHWR with thorium bundles for achieving full power. Annal Nucl Ener 21:1–9

    Article  CAS  Google Scholar 

  3. Gresky AT (1956) Solvent extraction separation of 233U and thorium from fission products by means of tributyl phosphate. Peac Uses At Energy 9:505–510

    Google Scholar 

  4. Srinivas C, Yalmali V, Pente AS, Wattal PK, Misra SD (2012) Thoria/thoria-urania dissolution studies for reprocessing application, Bhabha Atomic Research Centre (BARC) Report, BARC/2012/E/007, June 2012. Mumbai, India

    Google Scholar 

  5. Parkinson BG, Holland D, Smith ME, Howes AP, Scales CR (2007) Effect of minor additions on structure and volatilization loss in simulated nuclear borosilicate glasses. J Non-Cryst Sol 353:4076–4083

    Article  CAS  Google Scholar 

  6. Lee WE, Ojovan MI, Stennett MC, Hyatt NC (2006) Immobilisation of radioactive waste in glasses, glass composite materials and ceramics. Adv Appl Ceram 105:3–12

    Article  CAS  Google Scholar 

  7. Kaushik CP, Mishra RK, Sengupta P, Kumar A, Das D, Kale GB, Raj K (2006) Barium borosilicate glass: a potential matrix for immobilization of sulfate bearing high-level radioactive liquid waste. J Nucl Mat 358:129–138

    Article  CAS  Google Scholar 

  8. Ojovan MI, Lee WE (2007) New developments in glassy nuclear wasteforms. Nova Science Publishers Inc, New York. ISBN 1600217834

    Google Scholar 

  9. Eller PG, Tarvinen GO, Purson JD, Penneman RA, Ryan RR, Lytle FW, Greegor RB (1985) Actinide valences in borosilicate glass. Radiochim Acta 39:17–22

    CAS  Google Scholar 

  10. Mishra RK, Sudarsan V, Kaushik CP, Raj K, Vatsa RK, Body M, Tyagi AK (2009) Effect of fluoride ion incorporation on the structural aspects of barium–sodium borosilicate glasses. J Non-Cryst Solids 355:414–419

    Article  CAS  Google Scholar 

  11. Farges F (1991) Structural environment around Th4+ in silicate glasses: implications for the geochemistry of incompatible Me4+ elements. Geochim Cosmochim Acta 55:3303–3319

    Article  CAS  Google Scholar 

  12. Mishra RK, Sengupta P, Kaushik CP, Tyagi AK, Kale GB, Raj K (2007) Studies on immobilization of thorium in barium borosilicate glass. J Nuc Mat 360:143–150

    Article  CAS  Google Scholar 

  13. Nasir H, Kassandra P, Tristan L, Timothy A (2012) Thermal analysis and immobilisation of spent ion exchange resin in borosilicate glass. New J Glass Ceram 2:111–120

    Article  Google Scholar 

  14. Mishra RK, Sudarsan V, Kaushik CP, Raj K, Kulshreshtha SK, Tyagi AK (2006) Structural aspects of barium borosilicate glasses containing thorium and uranium oxides. J Nucl Mat 359:132–138

    Article  CAS  Google Scholar 

  15. Bickmore BR (2006) The effect of Al(OH) 4 on the dissolution rate of quartz. Geochim Cosmochim Acta 70:290–305

    Article  CAS  Google Scholar 

  16. He F, Ping C, Zheng Y (2013) Viscosity and structure of lithium sodium borosilicate glasses. Phys Proced 48:73–80

    Article  CAS  Google Scholar 

  17. Sengupta P, Kaushik CP, Dey GK (2013) Immobilization of high level nuclear wastes: the Indian scenario on a sustainable future of earth’s resources. Springer, Berlin Heidelberg

    Google Scholar 

  18. Raj K, Prasad KK, Bansal NK (2006) Radioactive waste management practices in India. Nucl Eng Des 226:914–930

    Article  Google Scholar 

  19. Sengupta P, Kaushik CP, Mishra RK, Kale GB (2007) Microstructural characterization and role of glassy layer developed on inconel 690 during a nuclear high-level waste vitrification process. J Am Ceram Soc 90:3057–3062

    Article  CAS  Google Scholar 

  20. Segebade C, Weise HP, Lutz GJ (1988) Photon Activation Analysis. W de Gruiter, Berlin, New York

    Google Scholar 

  21. Segebade C, Berger A (2008) Photon Activation Analysis. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, New Jersey

    Google Scholar 

  22. De Soete D, Gijbels R, Hoste J (1972) Neutron activation analysis. Wiley-inter science. Wiley, London

    Google Scholar 

  23. Sudarshan K, Tripathi R, Nair AGC, Acharya R, Reddy AVR, Goswami A (2005) A simple method for correcting the neutron self-shielding effect of matrix and improving the analytical response in prompt gamma-ray neutron activation analysis. Anal Chim Acta 549:205–211

    Article  CAS  Google Scholar 

  24. Acharya R (2009) Prompt gamma-ray neutron activation analysis methodology for determination of boron from trace to major contents. J Radioanal Nucl Chem 281:291–294

    Article  CAS  Google Scholar 

  25. Chhillar S, Acharya R, Sodaye S, Sudarshan K, Santra S, Mishra RK, Kaushik CP, Choudhury RK, Pujari PK (2012) Application of particle induced gamma-ray emission for non-destructive determination of fluorine in barium borosilicate glass samples. J Radioanal Nucl Chem 294:115–119

    Article  CAS  Google Scholar 

  26. Volfinger M, Robert JL (1994) Particle-induced-gamma-ray-emission spectrometry applied to the determination of light elements in individual grains of granite minerals. J Radioanal Nucl Chem 185:273–291

    Article  CAS  Google Scholar 

  27. Macias ES, Radcliffe CD, Lewis CW, Sawicki CR (1978) Proton induced gamma-ray analysis of atmospheric aerosols for carbon, nitrogen, and sulfur composition. Anal Chem 50:1120–1124

    Article  CAS  Google Scholar 

  28. Kiss AZ, Koltay E, Nyako B, Somorjal E, Anttila A, Raisanen J (1985) Measurement of thick-target gamma-ray production yields of the 7Li(p, p′)7Li and 7Li(p, γ)8Be reactions in the near-threshold energy region for the 7Li(p, n)7Be reaction. J Radioanal Nucl Chem 89:123–141

    Article  CAS  Google Scholar 

  29. Savidou A, Aslanoglou X, Paradellis T, Pilakouta M (1999) Proton induced thick target γ-ray yields of light nuclei at the energy region Ep = 1.0–4.1 MeV. Nucl Instrum Methods Phys Res B 152:12–18

    Article  CAS  Google Scholar 

  30. Molnar GL (ed) (2004) Handbook of prompt gamma activation analysis with neutron beams. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  31. Raisanen J, Witting T, Keinonen J (1987) Absolute thick-target γ-ray yields for elemental analysis by 7 and 9 MeV protons. Nucl Instrum Methods Phys Res B 28:199–204

    Article  Google Scholar 

  32. Chhillar S, Acharya R, Triptahi R, Sodaye S, Sudarshan K, Rout PC, Mukerjee SK, Pujari PK (2015) Compositional characterization of lithium titanate ceramic samples by determining Li, Ti and O concentrations simultaneously using PIGE at 8 MeV proton beam. J Radioanal Nucl Chem 305:463–467

    Article  CAS  Google Scholar 

  33. Duerden P, Bird JR, Scott MD, Clayton E, Russel LH, Cohen DD (1980) Nucl Instrum Methods 168:447–453

    Article  CAS  Google Scholar 

  34. Valković O, Jakšić M, Fazinić S, Valković V, Moschini G, Menapace E (1995) Quality control of PIXE and PIGE nuclear analytical techniques in geological and environmental applications. Nucl Instrum Methods Phys Res B 99:372–375

    Article  Google Scholar 

  35. Willy M (1988) Applications of ion beam analysis in biology and medicine, a review. Nucl Instrum Methods Phys Res B 35:388–403

    Article  Google Scholar 

  36. Dasari KB, Chhillar S, Acharya R, Ray DK, Behera A, Das NL, Pujari PK (2014) Simultaneous determination of Si, Al and Na concentrations by particle induced gamma-ray emission and applications to reference materials and ceramic archaeological artifacts. Nucl Instrum Methods Phys Res B 39:37–41

    Article  Google Scholar 

  37. Chhillar S, Acharya R, Sodaye S, Pujari PK (2014) Development of particle induced gamma-ray emission methods for nondestructive determination of isotopic composition of boron and its total concentration in natural and enriched samples. Anal Chem 8:11167–11173

    Article  Google Scholar 

  38. Chhillar S, Acharya R, Pai RV, Sodaye S, Mukerjee SK, Pujari PK (2012) A simple and sensitive particle induced gamma-ray emission method for non-destructive quantification of lithium in lithium doped Nd2Ti2O7 ceramic sample. J Radioanal Nucl Chem 293:437–441

    Article  CAS  Google Scholar 

  39. Chhillar S, Acharya R, Vittal Rao TV, Bamankar YR, Mukerjee SK, Pujari PK, Aggarwal SK (2013) Non-destructive compositional analysis of sol–gel synthesized lithium titanate (Li2TiO3) by particle induced gamma-ray emission and instrumental neutron activation analysis. J Radioanal Nucl Chem 298:1597–1603

    Article  CAS  Google Scholar 

  40. Bugoi R, Cojocaru V, Constantinescu B, Calligaro T (2008) Compositional studies on Transylvanian gold nuggets: advantages and limitations of PIXE–PIGE analysis. Nucl Instrum Methods Phys Res B 266:2316–2319

    Article  CAS  Google Scholar 

  41. Calligaro T, Dran JC, Poirot JP, Querre G, Salomon J, Zwaan JC (2000) PIXE/PIGE characterisation of emeralds using an external micro-beam. Nucl Instrum Methods Phys Res B161–163:769–774

    Article  Google Scholar 

  42. Muller K, Reiche R (2011) Differentiation of archaeological ivory and bone materials by micro-PIXE/PIGE with emphasis on two Upper Palaeolithic key sites: Abri Pataud and Isturitz, France. Archaeol Sci 38:3234–3243

    Article  Google Scholar 

  43. Smita Z, Milavecc T, Fajfarb H, Rehrend Th, Lanktone JW, Gratuze B (2013) Analysis of glass from the post-Roman settlement Tonovcov grad (Slovenia) by PIXE–PIGE and LA-ICP-MS. Nucl Instrum Methods Phys Res B 311:53–59

    Article  Google Scholar 

  44. Ziga S (2014) Analysis of historic glass by ion-beam methods. Archeometriai Műhely XI 3:159–167

    Google Scholar 

  45. Singh P (2002) Folded Tandem Ion Accelerator Facility at BARC, BARC Newsletter. Founder’s Day Special Issue, BARC, pp 22–32

    Google Scholar 

  46. Mukhopadhyay PK (2001) The operating software of the PHAST PC-MCA card. In: Proceedings of the Symposium on Intelligent Nuclear Instrumentation-2001 (INIT-2001), Mumbai, India, 6–9 Feb 2011. pp. 307–310

  47. Tripathi R (2006) An insight into data analysis in neutron activation analysis. Proc. DAE-BRNS Discussion Meet on Current Trends and Future Perspectives on Neutron Activation Analysis (CFNAA 2006), BARC, Mumbai, 16–17 Nov 2006, pp. 52–57

  48. Swain KK, Acharya R, Reddy AVR (2014) Analysis of SMELS by k0-based IM-NAA method using PFTS position of KAMINI reactor for quality control exercise. J Radioanal Nucl Chem 300:33–37

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. A. Goswami, Ex-Head, Radiochemistry Division, Bhabha Atomic Research centre (BARC), Dr. P. Singh, Ex-Head, Ion Accelerator Development Division (IADD), BARC, Mr, P.V. Bhagwat, Head, IADD, BARC, Mr. S.K. Gupta, Ex-Head, FOlded Tandem Ion Accelerator (FOTIA) Section, IADD, Mr. A. Agarwal of IADD, BARC, Mumbai and Dr. P.V. Satyam, Mr. A.K. Behera and Dr. D.K. Ray of Institute of Physics (IOP), Bhubaneswar for their support and help during this work. Authors also thank operation crew members of FOTIA and Ion Beam laboratory (IBL), IOP for their help during the experiment. One of the authors (Sumit Chhillar) thanks Homi Bhabha National Institute (HBNI), Department of Atomic Energy, India for the financial support during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Acharya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhillar, S., Acharya, R., Mishra, R.K. et al. Simultaneous determination of low Z elements in barium borosilicate glass samples by in situ current normalized particle induced gamma-ray emission methods. J Radioanal Nucl Chem 312, 567–576 (2017). https://doi.org/10.1007/s10967-017-5251-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5251-9

Keywords

Navigation