Skip to main content
Log in

The effect of the synthesis method on the parameters of pore structure and selectivity of ferrocyanide sorbents based on natural minerals

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Ferrocyanide sorbents were obtained via thin-layer and surface modification of natural clinoptilolite and marl. The effect of modification method on surface characteristics of these sorbents and their selectivity for cesium was studied. It was shown that the modification resulted in an increase of selectivity of modified ferrocyanide sorbents to cesium as compared with the natural clinoptilolite in presence of Na+, as well as in an increase of cesium distribution coefficients in presence of K+. The nickel–potassium ferrocyanide based on the clinoptilolite showed the highest selectivity for cesium at sodium concentrations of 10−4—2 mol L−1: cesium distribution coefficient was lg K d = 4.5 ± 0.4 L kg−1 and cesium/sodium separation factor was α(Cs/Na) = 250. In the presence of NH4 +, all modified sorbents showed approximately equal selectivity for 137Cs. Probable applications of the sorbents were suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Borai EH, Harjula R, Malinen L, Paajanen A (2009) Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals. J Hazard Mater 172:416–422

    Article  CAS  Google Scholar 

  2. Kazemian H, Zakeri H, Rabbani MS (2006) Cs and Sr removal from solution using potassium nickel hexacyanoferrate impregnated zeolites. J Radioanal Nucl Chem 268(2):231–236

    Article  CAS  Google Scholar 

  3. Li T, He F, Dai YD (2016) Prussian blue analog caged in chitosan surface-decorated carbon nanotubes for removal cesium and strontium. J Radioanal Nucl Chem 310(3):1139–1145

    Article  CAS  Google Scholar 

  4. Yang S, Han C, Wang X, Nagatsu M (2014) Characteristics of cesium ion sorption from aqueous solution on bentonite- and carbon nanotube-based composites. J Hazard Mater 274:46–52

    Article  CAS  Google Scholar 

  5. Park Y, Kim C, Choi SJ (2015) Selective removal of Cs using copper ferrocyanide incorporated on organically functionalized silica supports. J Radioanal Nucl Chem 303:199–208

    Article  CAS  Google Scholar 

  6. Vincent C, Barre Y, Vincent T, Taulemesse JM, Robitzer M, Guibal E (2015) Chitin-Prussian blue sponges for Cs(I) recovery: from synthesis to application in the treatment of accidental dumping of metal-bearing solutions. J Hazard Mater 287:171–179

    Article  CAS  Google Scholar 

  7. Vrtoch L, Pipıska M, Hornık M, Augustın J, Lesny J (2011) Sorption of cesium from water solutions on potassium nickel hexacyanoferrate-modified Agaricus bisporus mushroom biomass. J Radioanal Nucl Chem 287:853–862

    Article  CAS  Google Scholar 

  8. Chaudhury S, Pandey AK, Goswami A (2015) Copper ferrocyanide loaded track etched membrane: an effective cesium adsorbent. J Radioanal Nucl Chem 304:697–703

    Article  CAS  Google Scholar 

  9. Vincent T, Vincent C, Guibal E (2015) Immobilization of metal hexacyanoferrate ion-exchangers for the synthesis of metal ion sorbents—a mini-review. Molecules 20:20582–20613

    Article  CAS  Google Scholar 

  10. Yıldız B, Erten HN, Kıs M (2011) The sorption behavior of CS+ ion on clay minerals and zeolite in radioactive waste management: sorption kinetics and thermodynamics. J Radioanal Nucl Chem 288:475–483

    Article  Google Scholar 

  11. Galambos M, Suchanek P, Rosskopfova O (2012) Sorption of anthropogenic radionuclides on natural and synthetic inorganic sorbents. J Radioanal Nucl Chem 293:613–633

    Article  CAS  Google Scholar 

  12. Milyutin VV, Kononenko OA, Mikheev SV, Gelis VM (2010) Sorption of cesium on finely dispersed composite ferrocyanide sorbents. Radiochemistry 52:281–283

    Article  CAS  Google Scholar 

  13. Petrova MA, Flowers AG, Krip IM, Shimchuk TV, Petrushka IM (2008) Sorption of Sr on clay minerals modified with ferrocyanides and hydroxides of transition metals. Radiochemistry 50:502–507

    Article  CAS  Google Scholar 

  14. Luneva NK, Rat’ko AI, Petushok IA (1994) Mineral fibrous sorbents for concentrating radionuclides. Radiochemistry 4:337–339

    Google Scholar 

  15. Rat’ko AI, Panasyugin AS (1996) Sorption of 137Cs and 90Sr by modified sorbents based on clinoptilolite. Radiochemistry 1:66–68

    Google Scholar 

  16. Mimura H, Kimura M, Akiba K, Onodera Y (1999) Selective removal of cesium from sodium nitrate solutions by potassium nickel hexacyanoferrate-loaded chabazites. Sep Sci Technol 34:17–28

    Article  CAS  Google Scholar 

  17. Voronina AV, Blinova MO, Kulyaeva IO, Sanin PY, Semenishchev VS, Afonin YD (2015) Sorption of cesium radionuclides from aqueous solutions onto natural and modified aluminosilicates. Radiochemistry 57:446–452

    Google Scholar 

  18. Ovchinnikov NA, Bezdenezhnykh VS (1996) Method of soils rehabilitation. Russian Federation Patent No. 2064748 from 10.08.1996

  19. Campbell LS, Davies BE (1997) Experimental investigation of plant uptake of caesium from soils amended with clinoptilolite and calcium carbonate. Plant Soil 189:65–74

    Article  CAS  Google Scholar 

  20. Misaelides P (2011) Application of natural zeolites in environmental remediation: a short review. Microporous Mesoporous Mater 144(1–3):15–18

    Article  CAS  Google Scholar 

  21. Bondar PF (1998) About the assessment of efficiency of sorbents as means of radionuclides retention in soils. Radiat Biol Radioecol 2:267–272

    Google Scholar 

  22. Budarkov VA, Mayakov EA, Torubarova AA, Kalinin NF, Gelis VM, Milyutin VV, Penzin RA (1994) Method of caesium radionuclides transfer decreasing from soil to vegetation. Russian Federation Patent No. 2013913 from 15.06.1994

  23. Voronina AV, Blinova MO, Semenishchev VS, Gupta DK (2015) Returning land contaminated as a result of radiation accidents to farming use. J Environ Radioact 144:103–112

    Article  CAS  Google Scholar 

  24. Loos-Neskovic C, Fedoroff M, Garnier E, Gravereau P (1984) Zinc and nickel ferrocyanides—preparation, composition and structure. Talanta 31:1133–1147

    Article  CAS  Google Scholar 

  25. Lehto J, Haukka S, Harjula R, Blomberg M (1990) Mechanism of cesium ion-exchange on potassium cobalt hexacyanoferrates(II). J Chem Soc Dalton Trans 3:1007–1011

    Article  Google Scholar 

  26. Betenekov ND, Egorov YV, Popov VI, Puzako VD, Cheremukhin Yu G (1976) The method of synthesis of a thin-layer sorbent. USSR patent No. 526379

  27. Peters DG, Hayes JM, Hieftje GM (1974) chemical separations and measurements: theory and practice of analytical chemistry. Saunders, Philadelphia

    Google Scholar 

  28. Çakicioglu-Ozkan F, Ülkü S (2005) The effect of HCl treatment on water vapor adsorption characteristics of clinoptilolite rich natural zeolite. Microporous Mesoporous Mater 77:47–53

    Article  Google Scholar 

  29. Garcia-Basabe Y, Rodriguez-Iznaga I, Menorval M (2010) Step–wise dealumination of natural clinoptilolite: structural and physicochemical characterization. Microporous Mesoporous Mater 135:187–196

    Article  CAS  Google Scholar 

  30. Sokol AA, Catlow CRA, Garcés JM (2004) Transformation of hydroxyl nests in microporous aluminosilicates upon annealing. J Phys 16:2781–2794

    Google Scholar 

  31. Nakamato K (1981) Infra-red spectra of inorganic and coordination compounds. Wiley, New York

    Google Scholar 

  32. Kuznetsov YuV, Shchebetkovsky VN, Trusov AG (1974) Basis of radioactive water decontamination. Atomizdat, Moscow

    Google Scholar 

  33. Tarasevich YuI (1981) Natural sorbents in processes of water treatment. Naukova Dumka, Kiev

    Google Scholar 

  34. Tananaev IV, Seyfer GB, Kharitonov YY, Kuznetsov VG, Korol’kov AP (1971) Chemistry of ferrocyanides. Nauka, Moscow

    Google Scholar 

  35. Zolotov Yu A, Dorokhova EN, Fadeeva VI, Bol’shova TA, Brykina GD, Garmash AV, Dolmanova IF, Ivanov VM, Shpigun OA (1999) Fundamentals of analytical chemistry: textbook for higher schools. Book 1: General problems. Separation methods. Vysshaya Shkola, Moscow

    Google Scholar 

Download references

Acknowledgements

The work was performed under contract with the Ministry of Education of the Russian Federation of April 27, 2016 No. 02.G25.31.0210.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna V. Voronina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronina, A.V., Gorbunova, T.V. & Semenishchev, V.S. The effect of the synthesis method on the parameters of pore structure and selectivity of ferrocyanide sorbents based on natural minerals. J Radioanal Nucl Chem 312, 241–254 (2017). https://doi.org/10.1007/s10967-017-5237-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5237-7

Keywords

Navigation