Skip to main content
Log in

Chemical investigation of three plutonium–beryllium neutron sources

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Thorough physical and chemical characterization of plutonium–beryllium (PuBe) neutron sources is an important capability with applications ranging from material accountancy to nuclear forensics. Characterization of PuBe sources is not trivial owing to range of existing source designs and the need for adequate infrastructure to deal with radiation and protect the analyst. This study demonstrates a method for characterization of three PuBe sources that includes physical inspection and imaging followed by controlled disassembly and destructive analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Van Tuyle GJ, Strub T, O’Brien HA, Mason CFV, Gitomer SJ (2003) Reducing RDD Concerns Related to Large Radiological Source Applications. Los Alamos National Laboratory, LA-UR-03-6664

  2. Witkowski I, Nettleton AS, Feldman A (2015) New Directions in Source Recovery by OSRP at LANL. Los Alamos National Laboratory, LA-UR-15-20426

  3. Agency IAE (2011) IAEA’s Assistance on Disused Sealed Source Management. https://www.iaea.org/OurWork/ST/NE/NEFW/Technical-Areas/WTS/sealedsources-assistance.html. Accessed 29 Aug 2016

  4. IAEA (2015) Incidident and trafficking database 2015 fact sheet

  5. Bagi J, Cong Nguyen T, Lakosi L (2004) Assessment of the Pu content of Pu–Be neutron sources. Nucl Instrum Meth B 222(1–2):242–248. doi:10.1016/j.nimb.2003.12.085

    Article  CAS  Google Scholar 

  6. Lakosi L, Bagi J, Nguyen CT (2006) Quantitative non-destructive assay of PuBe neutron sources. Nucl Instrum Meth B 243(2):385–391. doi:10.1016/j.nimb.2005.08.185

    Article  CAS  Google Scholar 

  7. Lakosi L, Nguyen CT, Bagi J (2006) Non-destructive actinide assay of neutron sources. Nucl Instrum Meth B 247(2):192–198. doi:10.1016/j.nimb.2006.02.010

    Article  CAS  Google Scholar 

  8. Bagi J, Lakosi L, Nguyen CT (2016) Neutron producing reactions in PuBe neutron sources. Nucl Instrum Meth B 366:69–76. doi:10.1016/j.nimb.2015.10.004

    Article  CAS  Google Scholar 

  9. Nguyen CT (2006) Verification of the 239Pu content, isotopic composition and age of plutonium in Pu–Be neutron sources by gamma-spectrometry. Nucl Instrum Meth B 251(1):227–236. doi:10.1016/j.nimb.2006.06.004

    Article  CAS  Google Scholar 

  10. Dryák P, Kovář P (2014) Determination of Pu-239 content in Pu–Be neutron sources using Gamma-ray spectrometry. J Radioanal Nucl Ch 299(1):61–64. doi:10.1007/s10967-013-2757-7

    Article  Google Scholar 

  11. Tandon L, Gallimore DL, Garduno K, Keller RC, Kuhn KJ, Lujan EJ, Martinez A, Meyers SC, Moore SS, Porterfield DR, Schwartz DS, Spencer KJ, Townsend LE, Xu N (2010) Nuclear forensics of special nuclear material at Los Alamos: three recent studies. In: 51st Annual meeting of the Institute for Nuclear Materials Management

  12. Tate RE, Coffinberry AS (1958) Plutonium-beryllium neutron sources, their fabrication and neutron yield. In: Second U.N. international conference on the peaceful uses of atomic energy, p 12

  13. Giles IS, Peisach M (1979) A survey of the analytical significance of prompt gamma-rays induced by 5 MeV alpha-particles. J Radioanal Chem 50(1–2):307–360. doi:10.1007/BF02519967

    Article  CAS  Google Scholar 

  14. Runnalls OJC, Boucher RR (1956) Neutron yields from actinide-beryllium alloys. Can J Phys 34(9):949–958. doi:10.1139/p56-105

    Article  CAS  Google Scholar 

  15. Coffinberry AS, Schonfield FW, Cramer EM, Miner WN, Ellinger FH, Elliott RO, Struebing VO (1958) The physical metallurgy of plutonium and its alloys. In: Second U.N. international conference on the peaceful uses of atomic energy

  16. Boucher RR, Gaetan GJ (1961) Production of neutron source material. United States Patent U,S30,108,25

  17. Mahajan VK, Ganguly C, Ramakumar MS, Roy PR, Moorthy VK (1972) Fabrication of plutonium-beryllium neutron sources. Bhabha Atomic Research Centre, BARC-629

  18. Michaud GG, Boucher RR (1960) Neutron Sources from the Beryllium Reduction of Plutonium Dioxide. Can J Phys 38(4):555–564. doi:10.1139/p60-057

    Article  CAS  Google Scholar 

  19. Wauchope KL, Baird J (1959) The preparation of a large plutonium-beryllium neutron source. J Nucl Mater 1(2):191–195. doi:10.1016/0022-3115(59)90052-2

    Article  CAS  Google Scholar 

  20. Ellinger FH (1961) Chapter XXV: a review of the intermetallic compounds of plutonium. In: Coffinberry AS, Miner WN (eds) The metal plutonium. University of Chicago Press, Chicago

    Google Scholar 

  21. Bochvar AA, Konobeevskii ST, Kutaitsev VI, Men’shikova TS, Chebotarev NT (1958) Interaction between plutonium and other metals in connection with their arrangement in Mendeleev’s periodic table. Sov J Atom Energy 5(3):1177–1191. doi:10.1007/BF01472485

    Article  Google Scholar 

  22. Konobeevskii ST (1955) Phase diagrams of some plutonium systems. In: Conference of USSR Academy of Sciences on peaceful uses of atomic energy

  23. Runnalls OJC (1956) The Crystal Structures of Some Intermetallic Compounds of Plutonium. Can J Chem 34(2):133–145. doi:10.1139/v56-017

    Article  CAS  Google Scholar 

  24. Stewart L (1955) Neutron spectrum and absolute yield of a plutonium-beryllium source. Phys Rev 98(3):740–743

    Article  CAS  Google Scholar 

  25. Vega-Carrillo HR, Manzanares-Acuña E, Becerra-Ferreiro AM, Carrillo-Nuñez A (2002) Neutron and gamma-ray spectra of 239PuBe and 241AmBe. Appl Radiat Isot 57(2):167–170. doi:10.1016/S0969-8043(02)00083-0

    Article  CAS  Google Scholar 

  26. Anderson ME, Bond WH (1963) Neutron spectrum of a plutonium-beryllium source. Nucl Phys 43:330–338. doi:10.1016/0029-5582(63)90352-3

    Article  CAS  Google Scholar 

  27. Anderson ME (1968) Increases in neutron yields of plutonium-beryllium (a, n) sources. Nucl Appl 4:142–147

    CAS  Google Scholar 

  28. Glasstone S (1956) Principles of nuclear reactor engineering, vol ix. Van Nostrand, New York

    Google Scholar 

  29. Dewan JT (1986) Open-hole nuclear logging—State of the Art. In: SPWLA 27th annual logging symposium

  30. Council NR (2008) Radiation source use and replacement: abbreviated version. The National Academies Press, Washington, DC. doi:10.17226/11976

    Google Scholar 

  31. Kornreich DE (2014) Simplified Dose-Rate Calculations for Select PuBe Neutron Sources. Los Alamos National Laboratory, LA-UR-14-28043

  32. Palmer MJ (1990) Recovery of Plutonium From Plutonium-Beryllium Neutron Sources. Los Alamos National Laboratory, LA-11703-MS

  33. Rudisill TS, Crowder ML (2006) dissolution of fissile materials containing plutonium and beryllium metals. Sep Sci Technol 41(10):2013–2029. doi:10.1080/01496390600742930

    Article  CAS  Google Scholar 

  34. Breakall KL (1972) Destructive analysis of neutron sources M-71 and 1053S. Mound Laboratory, MLM-2127(J)

  35. Xu N, Kuhn K, Gallimore D, Martinez A, Schappert M, Montoya D, Lujan E, Garduno K, Tandon L (2015) Elemental composition in sealed plutonium-beryllium neutron sources. Appl Radiat Isot 95:85–89. doi:10.1016/j.apradiso.2014.10.013

    Article  CAS  Google Scholar 

  36. Byerly BL, Stanley F, Spencer K, Colletti L, Garduno K, Kuhn K, Lujan E, Martinez A, Porterfield D, Rim J, Schappert M, Thomas M, Townsend L, Xu N, Tandon L (2016) Forensic investigation of plutonium metal: a case study of CRM 126. J Radioanal Nucl Chem. doi:10.1007/s10967-016-4919-x

    Google Scholar 

  37. Marsh S, Ortiz MR, Abernathey R, Rein J (1974) Improved two-column ion exchange separation of plutonium, uranium, and neodymium in mixed uranium–plutonium fuels for burnup measurement. Los Alamos National Laboratory, LA-5568

  38. Marsh SF, Mann MJ (1987) Improved recovery and purification of plutonium at Los Alamos using macroporous anion exchange resin. Los Alamos National Laboratory, LA-10906

  39. Abernathey R, Matlack G, Rein J (1972) Sequential ion exchange separation and mass spectrometric determination of neodymium, uranium, and plutonium in mixed oxide fuels for burnup and isotopic distribution measurements. In: Proceedings of the analytical methods in the nuclear fuel cycle, pp 513–521

  40. Callis EL, Abernathey RM (1991) High-precision isotopic analyses of uranium and plutonium by total sample volatilization and signal integration. Int J Mass Spectrom 103(2–3):93–105. doi:10.1016/0168-1176(91)80081-W

    Article  CAS  Google Scholar 

  41. Wallenius M, Mayer K (2000) Age determination of plutonium material in nuclear forensics by thermal ionisation mass spectrometry. Fresenius’ J Anal Chem 366(3):234–238. doi:10.1007/s002160050046

    Article  CAS  Google Scholar 

  42. Sturm M, Richter S, Aregbe Y, Wellum R, Mialle S, Mayer K, Prohaska T (2014) Evaluation of chronometers in plutonium age determination for nuclear forensics: what if the ‘Pu/U clocks’ do not match? J Radioanal Nucl Ch 302(1):399–411. doi:10.1007/s10967-014-3294-8

    Article  CAS  Google Scholar 

  43. Coleman RF, Perkin JL (1959) The determination of the oxygen content of beryllium metal by activation. Analyst 84(997):233–236. doi:10.1039/AN9598400233

    Article  CAS  Google Scholar 

  44. Love B (1963) Purification of beryllium. United States Patent U,S30,830,94

Download references

Acknowledgements

This work was supported by the U.S. Department of Homeland Security, Domestic Nuclear Detection Office, National Technical Nuclear Forensics Center [Grant number HSHQDC-14-X-00028]. This support does not constitute an express or implied endorsement on the part of the Government. This publication is LA-UR-16-2905.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Byerly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byerly, B., Kuhn, K., Colletti, L. et al. Chemical investigation of three plutonium–beryllium neutron sources. J Radioanal Nucl Chem 312, 95–104 (2017). https://doi.org/10.1007/s10967-017-5192-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5192-3

Keywords

Navigation