Journal of Radioanalytical and Nuclear Chemistry

, Volume 311, Issue 3, pp 1619–1625 | Cite as

Gamma radiolysis of anion exchange resins based on 4-vinylpyridine in aqueous solution

  • Puyin Wang
  • Jianhua Zu
  • Afshin Khayambashi
  • Ruiqin Liu
  • Yuezhou Wei
Article

Abstract

Radiation-induced degradation of the weakly and strongly 4-vinylpyridine basic ion exchange resins by gamma radiolysis was investigated in the presence of air and liquid water. This study is focused on evaluating the radiolytic gases (H2, CO, CO2 and CH4) and liquid products (water-solute TOC and NH4+). The weakly basic resin yielded lower amounts of H2 and CO and higher amounts of CO2 than those of the strongly basic resin. Moreover, the strong basic resin tended to yield greater amounts of NH4+. Resins were characterized by the FTIR spectroscopy technique and the results showed that the resins structures are relatively stable.

Keywords

Ion exchange resins Gamma radiolysis 4-Vinylpyridine Gas analysis Degradation 

References

  1. 1.
    Nash KL, Lumetta GJ, Clark SB, Friese JI (2006) Significance of the nuclear fuel cycle in the 21st century. ACS Symp 933(3):167–173Google Scholar
  2. 2.
    Nogami M, Fujii Y, Sugo T (1996) Radiation resistance of pyridine type anion exchange resins for spent fuel treatment. J Radioanal Nucl Chem 203(1):109–117CrossRefGoogle Scholar
  3. 3.
    Pillay K (1986) A review of the radiation stability of ion exchange materials. J Radioanal Nucl Chem 102(1):247–268. doi:10.1007/BF02037966 CrossRefGoogle Scholar
  4. 4.
    Marsh SF, Veirs DK, Jarvinen GD, Barr ME, Moddy EW (2000) Molecularly engineered resins for plutonium recovery. Los Alamos Sci 26:454–463Google Scholar
  5. 5.
    Devi PR, Bhatt H, Deo M, Verma R, Reddy A (2014) Effect of gamma irradiation on the ion exchange capacity of polyaniline. Radiat Phys Chem 96:75–80CrossRefGoogle Scholar
  6. 6.
    Ito T, Nagaishi R, Kimura T, Kim S-Y (2015) Study on radiation effects on (MOTDGA–TOA)/SiO2–P adsorbent for separation of platinum group metals from high-level radioactive waste. J Radioanal Nucl Chem 305(2):419–427CrossRefGoogle Scholar
  7. 7.
    Iwai Y, Yamanishi T, Hiroki A, Tamada M (2009) Radiation-induced degradation in ion exchange resins for a water detritiation system. Fusion Sci Technol 56(1):163–167Google Scholar
  8. 8.
    Iwai Y, Hiroki A, Tamada M, Isobe K, Yamanishi T (2010) Radiation deterioration of ion-exchange Nafion N117CS membranes. Radiat Phys Chem 79(1):46–51CrossRefGoogle Scholar
  9. 9.
    Korifi R, Amat S, Rebufa C, Labed V, Rutledge DN, Dupuy N (2015) AComDim as a multivariate tool to analyse experimental design application to gamma-irradiated and leached ion exchange resins. Chemom Intell Lab Syst 141:12–23CrossRefGoogle Scholar
  10. 10.
    Baidak A, LaVerne JA (2010) Radiation-induced decomposition of anion exchange resins. J Nucl Mater 407(3):211–219CrossRefGoogle Scholar
  11. 11.
    Enomoto K, LaVerne JA, Tandon L, Enriquez AE, Matonic JH (2008) The radiolysis of poly (4-vinylpyridine) quaternary salt ion exchange resins. J Nucl Mater 373(1):103–111CrossRefGoogle Scholar
  12. 12.
    Draye M, Nsouli B, Allali H, Lemaire M, Thomas J-P (1997) Gamma-ray-induced modifications of the chemical structure of an ion exchange resin. Polym Degrad Stab 56(2):157–167CrossRefGoogle Scholar
  13. 13.
    Draye M, Favre-Réguillon A, Foos J, Guy A (2000) An ESR study of. γ-irradiated P4VP polymers. Dose-Effect Relationships. Chem Lett 7:710–711CrossRefGoogle Scholar
  14. 14.
    Puyin Wang AK, Zu J, Wei Y (2016) Study the radiation effects on 4-vinylpyridine-based porous resins in 99Tc adsorption. J Radioanal Nucl Chem. doi:10.1007/s10967-016-4951-x Google Scholar
  15. 15.
    Allen AO (1961) The radiation chemistry of water and aqueous solutions. Van Nostrand, New YorkGoogle Scholar
  16. 16.
    Yamada R, Kumagai Y, Nagaishi R (2011) Effect of alumina on the enhancement of hydrogen production and the reduction of hydrogen peroxide in the γ-radiolysis of pure water and 0.4 M H2SO4 aqueous solution. Int J Hydrog Energy 36(18):11646–11653CrossRefGoogle Scholar
  17. 17.
    Chang Z, Laverne JA (2000) Hydrogen production in γ-ray and helium-ion radiolysis of polyethylene, polypropylene, poly (methyl-methacrylate), and polystyrene. J Polym Sci A 38(9):1656–1661CrossRefGoogle Scholar
  18. 18.
    Dhiman SB, Goff GS, Runde W, LaVerne JA (2013) Hydrogen production in aromatic and aliphatic ionic liquids. J Phys Chem B 117(22):6782–6788CrossRefGoogle Scholar
  19. 19.
    Dely N, Esnouf S, Legand S, Dauvois V, Dannoux A, Amekraz B, Moulin C (2008) Radiolyse γ des polymères: production de gaz en conditions inertes. Rapport CEA-NT DPC/SECR:08-017Google Scholar
  20. 20.
    Traboulsi A, Labed V, Dauvois V, Dupuy N, Rebufa C (2013) Gamma radiation effect on gas production in anion exchange resins. Nucl Instrum Methods Phys Res 312:7–14CrossRefGoogle Scholar
  21. 21.
    Wu KH, Wang YR, Hwu WH (2003) FTIR and TGA studies of poly(4-vinylpyridine-co-divinylbenzene)-Cu(II) complex. Polym Degrad Stab 79(2):195–200CrossRefGoogle Scholar
  22. 22.
    Kumaresan R, Sabharwal KN, Srinivasan TG, Rao PRV, Dhekane G (2008) Studies on the sorption of palladium using cross-linked poly (4-vinylpyridine–divinylbenzene) resins in nitric acid medium. Solv Extr Ion Exch 26(5):643–671CrossRefGoogle Scholar
  23. 23.
    Meng QB, Yang G-S, Lee Y-S (2012) Synthesis of 4-vinylpyridine–divinylbenzene copolymer adsorbents for microwave-assisted desorption of benzene. J Hazard Mater 205:118–125CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Puyin Wang
    • 1
  • Jianhua Zu
    • 1
  • Afshin Khayambashi
    • 1
  • Ruiqin Liu
    • 1
  • Yuezhou Wei
    • 1
  1. 1.School of Nuclear Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations