Skip to main content
Log in

Removal of 226Ra from aqueous media and its thermodynamics and kinetics

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The composite adsorbent prepared by mixing of polyacrylonitrile and clinoptilolite was used for investigating the adsorption behaviour of 226Ra in column system. The effective parameters like initial activity concentration, pH of the solution, contact time and temperature for adsorption behaviour of 226Ra were studied. Adsorption efficiency of 226Ra on composite adsorbent from aqueous solution was determined to 98.73 ± 0.59 % at pH 5.0 and 30 °C in a short time. The isotherm models were studied to evaluated adsorption characteristics of 226Ra onto composite adsorbent. The thermodynamic parameters were showing that the processes for 226Ra were exothermic. Adsorption kinetics of the radium is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gad SC (2014) Reference module in biomedical sciences from encyclopedia of toxicology. In: Wexler P (ed), 3rd edn. 44–45

  2. Alabdula’aly AI, Maghrawy HB (2010) Radon emanation from radium specific adsorbents. Water Res 44:177–184

    Article  Google Scholar 

  3. Adamson AW, Gast AP (1997) Physical Chemistry, 6th edn. A Wiley-Interscience Publication, Washington, D.C.

    Google Scholar 

  4. He J, Hong S, Zhang L, Gan F, Ho Y-S (2010) Equilibrium and thermodynamic parameters of adsorption of methylene blue onto rectorite. Fresenius Environ Bull 19(11a):2651–2656

    CAS  Google Scholar 

  5. Elhussien MH, Isa YM (2015) Langmuir, Freundlich adsorption isotherms and kinetics for the removal of methylene blue dye from aqueous solution using activated carbon derived from pods of Acacia nilotica var astringens (Sunt tree) by chemical activation with ZnCl2. Chem Process Eng Res. 38:25–34

    Google Scholar 

  6. Akyil S, Eral M (2005) Preparation of composite adsorbents and their characteristics. J Radioanal Nucl Chem 266(1):89–93

    Article  CAS  Google Scholar 

  7. Kilincarslan A, Akyil S (2005) Uranium adsorption characteristic and thermodynamic behaviour of clinoptilolite zeolite. J Radioanal Nucl Chem 264(3):541–548

    Article  CAS  Google Scholar 

  8. Kilincarslan Kaygun A, Akyil S (2007) Study of the behaviour of thorium adsorption on PAN/zeolite composite adsorbent. J Hazard Mater 147:357–362

    Article  Google Scholar 

  9. Harjula R, Lehto J (1986) Effect of sodium and potassium ions on cesium adsorption from nuclear power plant waste solutions on synthetic zeolites. Nucl Chem Waste Manag. 6(2):133–137

    Article  CAS  Google Scholar 

  10. Borai EH, Harjula R, Malinen L, Paajanen A (2009) Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals. J Hazard Mater 172(1):416–422

    Article  CAS  Google Scholar 

  11. El Afifi EM, Attallah MF, Borai EH (2016) Utilization of natural hematite as reactive barrier for immobilization of radionuclides from radioactive liquid waste. J Environ Radioac. 151(1):156–165

    Article  Google Scholar 

  12. Akyil S, Aslani MAA, Eral M (2003) Sorption characteristics of uranium onto composite ion exchangers. J Radioanal Nucl Chem 256(1):45–51

    Article  CAS  Google Scholar 

  13. Wang Y-Q, Z-bin Zhang, Li Q, Liu Y-H (2012) Adsorption of uranium from aqueous solution using HDTMA+ pillared bentonite: isotherm, kinetic and thermodynamic aspects. J Radioanal Nucl Chem 293:231–239

    Article  CAS  Google Scholar 

  14. Romero-Gonzalez J, Peralta-Videa JR, Rodriguez E, Ramirez SL, Gardea-Torresdey JL (2005) Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla. J Chem Thermodyn. 37:343–347

    Article  CAS  Google Scholar 

  15. Maleki MS, Moradi O, Tahmasebi S (2012) Adsorption of albumin by gold nanoparticles: equilibrium and thermodynamics studies. Arabian J Chem. doi:10.1016/j.arabjc.2012.10.009

    Google Scholar 

  16. Yusan Doyurum S, Akyil S (2008) Sorption of uranium(VI) from aqueous solutions by akaganeite. J Hazard Mater 160:388–395

    Article  Google Scholar 

  17. Camtakan Z, Erenturk S, Yusan S (2012) Magnesium oxide nanoparticles: preparation, characterization, and uranium sorption properties. Environ Progr Sustain Energy. 31(4):536–543

    Article  CAS  Google Scholar 

  18. Hasany SM, Saeed MM, Ahmed M (2002) Sorption and thermodynamic behavior of zinc(II)-thiocyanate complexes onto polyurethane foam from acidic solutions. J Radioanal Nucl Chem 252:477–484

    Article  CAS  Google Scholar 

  19. Afzal M, Ahmad H, Saleem M, Hasany SM (1994) Thermodynamics of adsorption of cerium on lead dioxide. J Radioanal Nucl Chem 86(1):63–74

    Article  Google Scholar 

  20. Jaycock MJ, Parfitt GD (1981) Chemistry of interfaces. Ellis Horwood, Onichester, pp 12–13

    Google Scholar 

  21. Gereli G, Seki Y, Kusoglu IM, Yurdakoc K (2006) Equilibrium and kinetics for the sorption of promethazine hydrochloride onto K10 montmorillonite. J Colloid Interface Sci 299:155–162

    Article  CAS  Google Scholar 

  22. Yu Y, Zhuang YY, Wang ZH (2001) Adsorption of water-soluble dye onto functionalized resin. J Colloid Interface Sci 242:288–293

    Article  CAS  Google Scholar 

  23. Gimbert F, Morin-Crini N, Renault F, Badot PM, Crini G (2008) Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: error analysis. J Hazard Mater 157:34–46

    Article  CAS  Google Scholar 

  24. Yusan S, Erenturk Akyil S (2010) Adsorption equilibrium and kinetics of U(VI) on beta type of akaganeite. Desalination 263:233–239

    Article  CAS  Google Scholar 

  25. Slimani R, El Ouahabi I, Abidi F, El Haddad M, Regti A, Laamari MR, El Antri S, Lazar S (2014) Calcined eggshells as a new biosorbent to remove basic dye from aqueous solutions: thermodynamics, kinetics, isotherms and error analysis. J Taiwan Inst Chem Eng. 45:1578–1587

    Article  CAS  Google Scholar 

  26. Ganesapillai M, Simha P (2015) The rationale for alternative fertilization: equilibrium isotherm, kinetics and mass transfer analysis for urea-nitrogen adsorption from cow urine. Res Effici Technol. 1:90–97

    Article  Google Scholar 

  27. Javadian H (2014) Application of kinetic, isotherm and thermodynamic models for the adsorption of Co(II) ions on polyaniline/polypyrrole copolymer nanofibers from aqueous solution. J Indust Eng Chem. 20:4233–4241

    Article  CAS  Google Scholar 

  28. Khalili F, Al-Banna G (2015) Adsorption of uranium(VI) and thorium(IV) by insolubilized humic acid from Ajloun soil—Jordan. J Environ Radioac. 146:16–26

    Article  CAS  Google Scholar 

  29. Ciffroy P, Garnier JM, Pham MK (2001) Kinetics of the adsorption and desorption of radionuclides of Co, Mn, Cs, Fe, Ag and Cd in freshwater systems: experimental and modelling approaches. J Environ Radioac. 55:71–91

    Article  CAS  Google Scholar 

  30. Karunakara N, Kumara KS, Yashodhara I, Sahoo BK, Gaware JJ, Sapra BK, Mayya YS (2015) Evaluation of radon adsorption characteristics of a coconut shell-based activated charcoal system for radon and thoron removal applications. J Environ Radioac. 142:87–95

    Article  CAS  Google Scholar 

  31. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  32. Plazinski W, Dziuba J, Rudzinski W (2013) Modelling of sorption kinetics: the pseudo-second order equation and the sorbate intraparticle diffusivity. Adsorption. 19:1055–1064

    Article  CAS  Google Scholar 

  33. Haciyakupoglu S, Orucoglu E, Esen AN, Yusan S, Erenturk S (2014) Kinetic modeling of selenium (IV) adsorption for remediation of contaminated aquatic systems based on meso-scale experiments. Desalination Water Treat. 56(5):1208–1216

    Article  Google Scholar 

  34. Aharoni C, Tompkins FC (1970) Kinetics of adsorption and desorption and the Elovich equation. Adv Catal 21:1–49

    CAS  Google Scholar 

  35. Wua FC, Tsengb RL, Juang RS (2009) Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem Eng J. 150(2–3):366–373

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to the Unit of the Scientific Research Projects of Ege University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Akyil Erenturk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erenturk, S.A., Kaygun, A.K. Removal of 226Ra from aqueous media and its thermodynamics and kinetics. J Radioanal Nucl Chem 311, 1227–1233 (2017). https://doi.org/10.1007/s10967-016-5047-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5047-3

Keywords

Navigation