Skip to main content
Log in

A Brazilian coal fly ash as a potential source of rare earth elements

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Rare earth elements (REEs) have several applications and their market demands have increased. Recently, coal fly ash (CFA) has been considered as a source of these elements. The purpose of this study was to evaluate the REEs content in a CFA from a Brazilian coal power plant by instrumental neutron analysis, to classify it according to commercial purposes and to assess the weathering impact in the REEs content, since it is held in fields nearby the power plant. The results pointed no significant REEs leachability and indicated this CFA as a promising REEs source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hayes-Labruto L, Schillebeeckx SJD, Workman M, Shah N (2013) Contrasting perspectives on China’s rare earths policies: reframing the debate through a stakeholder lens. Energy Policy. doi:10.1016/j.enpol.2013.07.121

    Google Scholar 

  2. Massari S, Ruberti M (2013) Rare earth elements as critical raw materials: focus on international markets and future strategies. Res Policy. doi:10.1016/j.resourpol.2012.07.001

    Google Scholar 

  3. Binnemans K, Jones PT, Blanpain B, Van Gerven T, Yang Y, Walton A et al (2013) Recycling of rare earths: a critical review. J Clean Prod. doi:10.1016/j.jclepro.2012.12.037

    Google Scholar 

  4. Bardano BMM (2015) Séries Estudos e Documentos 86: Potencial de aproveitamento de fontes secundárias para terras raras: resíduos industriais. CETEM/MCTI, Rio de Janeiro

    Google Scholar 

  5. Funari V, Bokhari SNH, Vigliotti L, Meisel T, Braga R (2016) The rare earth elements in municipal solid waste incinerators ash and promising tools for their prospecting. J Hazard Mater. doi:10.1016/j.jhazmat.2015.06.015

    Google Scholar 

  6. Seredin VV, Dai S (2012) Coal deposits as potential alternative sources for lanthanides and yttrium. Int J Coal Geol. doi:10.1016/j.coal.2011.11.001

    Google Scholar 

  7. Hower J, Granite E, Mayfield D, Lewis A, Finkelman R (2016) Notes on contributions to the science of rare earth element enrichment in coal and coal combustion by-products. Minerals 6:32

    Article  Google Scholar 

  8. Blissett RS, Smalley N, Rowson NA (2014) An investigation into six coal fly ashes from the United Kingdom and Poland to evaluate rare earth element content. Fuel. doi:10.1016/j.fuel.2013.11.053

    Google Scholar 

  9. Dai S, Graham IT, Ward CR (2016) A review of anomalous rare earth elements and yttrium in coal. Int J Coal Geol. doi:10.1016/j.coal.2016.04.005

    Google Scholar 

  10. Franus W, Wiatros-Motyka MM, Wdowin M (2015) Coal fly ash as a resource for rare earth elements. Environ Sci Pollut Res 22:9464–9474

    Article  CAS  Google Scholar 

  11. Zhang WC, Rezaee M, Bhagavatula A, Li YG, Groppo J, Honaker R (2015) A review of the occurrence and promising recovery methods of rare earth elements from coal and coal by-products. Int J Coal Prep Util 35:295–330

    Article  CAS  Google Scholar 

  12. Gomes HI, Mayers WM, Rogerson M, Steward DI, Burked IT (2016) Alkaline residues and the environment: a review of impacts, management practices and opportunities. J Clean Prod. doi:10.1016/j.clepro.2015.09.111

    Google Scholar 

  13. Rohde GM, Zwonok O, Chies F, da Silva NLW (2006) Cinza de Carvão Fóssil no Brasil: Aspectos Técnicos e Ambientais v.1. Porto Alegre, Porto Alegre

    Google Scholar 

  14. da Silva RC, de Marchi Neto I, Seifert SS (2016) Electricity supply security and the future role of renewable energy sources in Brazil. Renew Sustain Energy Rev 56:328–341

    Article  Google Scholar 

  15. Ferrarini SF, Cardoso AM, Paprocki A, Pires M (2016) Integrated synthesis of zeolites using coal fly ash: element distribution in the products, washing waters and effluent. J Braz Chem Soc 1:34–37

    Google Scholar 

  16. Cunico P, Kumar A, Fungaro DA (2015) Adsorption of dyes from simulated textile wastewater onto modified nanozeolite from coal fly ash. J Nanosci Nanoeng 3:148–161

    Google Scholar 

  17. Alcântara RR, Izidoro JC, Fungaro DA (2015) Synthesis and characterization of surface modified zeolitic nanomaterial from coal fly ash. Int J Mater Chem Phys 1:370–377

    Google Scholar 

  18. Izidoro JDC, Fungaro DA, Abbott JE, Wang S (2013) Synthesis of zeolites X and A from fly ashes for cadmium and zinc removal from aqueous solutions in single and binary ion systems. Fuel. doi:10.1016/j.fuel.2012.07.060

    Google Scholar 

  19. Zimmer A, Bergmann CP (2007) Fly ash of mineral coal as ceramic tiles raw material. Waste Manag 27:59–68

    Article  CAS  Google Scholar 

  20. Basu M, Pande M, Bhadoria PBS, Mahapatra SC (2009) Potential fly-ash utilization in agriculture: a global review. Prog Nat Sci Prog Nat Sci 19:1173–1186

    Article  CAS  Google Scholar 

  21. Flues M, Sato IM, Scapin MA, Cotrim MEB, Camargo IMC (2013) Toxic elements mobility in coal and ashes of Figueira coal power plant, Brazil. Fuel 103:430–436

    Article  CAS  Google Scholar 

  22. Institute of Astronomy, Geophysics and Atmospheric Sciences, IAG (2008) Boletim climatológico anual da estação meteorológica do IAG/USP. IAG-USP, São Paulo

    Google Scholar 

  23. ISO 13528:2005 (2005) Statistical methods for use in proficiency testing by interlaboratory comparisons. International organization for standardization, Geneva

    Google Scholar 

  24. Machado CN, Maria SP, Saiki M, Figueiredo AMG (1998) Determination of rare earth elements in the biological reference materials pine needles and spruce needles by neutron activation analysis. J Radioanal Nucl Chem 233:59–61

    Article  CAS  Google Scholar 

  25. Ribeiro IS, Genezini FA, Saiki M, Zahn GS (2013) Determination of uranium fission interference factors for INAA. J Radioanal Nucl Chem 296:759–762

    Article  CAS  Google Scholar 

  26. Izquierdo M, Querol X (2012) Leaching behavior of elements from coal combustion fly ash: an overview. Int J Coal Geol. doi:10.1016/j.coal.2011.10.006

    Google Scholar 

  27. Pires M, Querol X (2004) Characterization of Candiota (South Brazil) coal and combustion by-product. Int J Coal Geol 60:57–72

    Article  CAS  Google Scholar 

  28. Silva L, Ward C, Hower J, Izquierdo M, Waanders F, Oliveira M et al (2010) Mineralogy and leaching characteristics of coal ash from a major Brazilian power plant. Coal Combust Gasif Prod 2:51–65

    Google Scholar 

  29. Bentlin FRS (2012) Desenvolvimento de métodos analíticos para a determinação de lantanídeos por técnicas de espectrometria atômica com plasma indutivamente acoplado. Doctoral thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre http://hdl.handle/10183/49696. Accessed in 21 Apr 2016

  30. Campaner VP (2013) Geochemical dispersion of elements and radionuclides in the atmosphere and soil of an area with mining and coal-fired thermoelectric power plant activities. Doctoral thesis, Universidade Estadual de Campinas, Campinas, Brasil. Retrieved from http://www.bibliotecadigital.unicamp.br/document/?code=000908841. Accessed in 21 April 2016

  31. Ketris MP, Yudovich YE (2009) Estimation of clarkes for carbonaceous biolithes: world average for trace element contents in black shales and coals. Int J Coal Geol 78:135–148

    Article  CAS  Google Scholar 

  32. Taylor SR, McLennan SH (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  33. Flues M, Carmargo IMC, Silva PSC, Mazzilli BP (2006) Radioactivity of coal and ashes from Figueira coal power plant in Brazil. J Radioanal Nucl Chem 270:597–602

    Article  CAS  Google Scholar 

  34. Depoi FS, Pozebon D, Kalkreuth WD (2008) Chemical characterization of feed coals and combustion-by-products from Brazilian power plants. Int J Coal Geol 76:227–236

    Article  CAS  Google Scholar 

  35. Levandowski J, Kalkreuth W (2009) Chemical and petrographical characterization of feed coal, fly ash and bottom ash from Figueira power plant. Int J Coal Geol, Paraná. doi:10.1016/j.coal.2008.05.005

    Google Scholar 

  36. Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal supergroup, South Africa. Precambrian Res 79:37–55

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from FAPESP (São Paulo Research Foundation). We are grateful to Cambui Coal Company (Companhia Carbonifera Cambui) for permission to carry out this project. The author C.N Lange thanks for the fellowship from the Brazilian Nuclear Energy Comission (CNEN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila N. Lange.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lange, C.N., Camargo, I.M.C., Figueiredo, A.M.G.M. et al. A Brazilian coal fly ash as a potential source of rare earth elements. J Radioanal Nucl Chem 311, 1235–1241 (2017). https://doi.org/10.1007/s10967-016-5026-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5026-8

Keywords

Navigation