Interaction of elemental mercury with selenium surfaces: model experiments for investigations of superheavy elements copernicium and flerovium


The adsorption behavior of 197Hg and 183–185Hg on red amorphous selenium (red a-Se) and trigonal selenium (t-Se) was investigated experimentally by off-line and on-line gas chromatographic methods, in preparation of a sensitive chemical separation and characterization of the transactinides copernicium (Cn, Z = 112) and flerovium (Fl, Z = 114). Monte-Carlo simulations of a diffusion controlled deposition were in good agreement with the experimental results, assuming as interaction limits −ΔH red a-Seads (Hg) > 85 kJ/mol, and −ΔH t-Seads (Hg) < 60 kJ/mol. Both Se allotropes can be used as stationary surfaces in comparative gas-chromatographic chemical investigations of Cn and Fl.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Oganessian Y et al (2006) Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm + 48Ca fusion reactions. Phys Rev C 74:044602-1–044602-9

    Article  Google Scholar 

  2. 2.

    Pyykko P (1988) Relativistic effects in structural chemistry. Chem Rev 88:563–594

    CAS  Article  Google Scholar 

  3. 3.

    Hoffman D (2012) Development, relevance, and application of “atom-at-a-time” techniques. J Radioanal Nucl Chem 291:5–11

    CAS  Article  Google Scholar 

  4. 4.

    Gäggeler H, Türler A (2014) Gas-phase chemistry of superheavy elements. In: Schädel M (ed) The chemistry of superheavy elements, 2nd edn. Springer, Berlin, pp 415–483

    Google Scholar 

  5. 5.

    Eichler R (2015) Superheavy element chemistry. In: Greiner W (ed) Nuclear physics: present and future, 2nd edn. Springer, Switzerland, pp 33–43

    Google Scholar 

  6. 6.

    Eichler R et al (2007) Chemical characterization of element 112. Nature 447:72–75

    CAS  Article  Google Scholar 

  7. 7.

    Pershina V et al (2009) Theoretical predictions of adsorption behavior of elements 112 and 114 and their homologs Hg and Pb. J Chem Phys. 131:084713-1–084713-8

    Article  Google Scholar 

  8. 8.

    Eichler R et al (2010) Indication for a volatile element 114. Radiochim Acta 98:133–139

    CAS  Article  Google Scholar 

  9. 9.

    Yakushev A et al (2014) Superheavy element flerovium (element 114) is a volatile metal. Inorg Chem 53:1624–1629

    CAS  Article  Google Scholar 

  10. 10.

    Krishnan SV et al (1994) Sorption of elemental mercury by activated carbons. Environ Sci Technol 28:1506–1512

    CAS  Article  Google Scholar 

  11. 11.

    Sinha et al (1972) Removal of mercury by sulfurized carbons. Carbon 10:754–756

    CAS  Article  Google Scholar 

  12. 12.

    Schädel M, Shaughnessy D (2014) The chemistry of superheavy elements. Springer, Berlin

    Google Scholar 

  13. 13.

    Steinegger P et al (2016) Vacuum chromatography of Tl on SiO2 at the single-atom level. J Phys Chem C 120:7122–7132

    CAS  Article  Google Scholar 

  14. 14.

    Eichler B, Eichler R (2014) Thermochemical data from gas-phase adsorption and methods of their estimation. In: Schädel M, Shaughnessy D (eds) The chemistry of superheavy elements, 2nd edn. Springer, Berlin, pp 375–413

    Google Scholar 

  15. 15.

    Eichler B (2003) Volatilization behavior of transactinides from metal surfaces and melts (thermochemical calculation). Paul Scherrer Institut Report 2003, Villigen, Switzerland

  16. 16.

    Gaston N et al (2007) Is eka-mercury (element 112) a group 12 metal? Angew Chem Int Ed 46:1663–1666

    CAS  Article  Google Scholar 

  17. 17.

    Hermann A et al (2010) Spin-orbit effects in structural and electronic properties for the solid state of the group-14 elements from carbon to superheavy element 114. Phys Rev B. 82:155116-1–155116-8

    Google Scholar 

  18. 18.

    Ralston N (2008) Nanomaterials: nano-selenium captures mercury. Nat Nanotechnol 3:527–528

    CAS  Article  Google Scholar 

  19. 19.

    Robertson J (1976) A new model for the structure of amorphous selenium. Phil Mag 34:13–31

    CAS  Article  Google Scholar 

  20. 20.

    Caprion D et al (2000) Structure and relaxation in liquid and amorphous selenium. Phys Rev B. 62:3709–3716

    CAS  Article  Google Scholar 

  21. 21.

    Muñoz A (1987) Influence of the substrate on the crystallization kinetics of vapor-deposited amorphous selenium films. Thin Solid Films 149:L73–L76

    Article  Google Scholar 

  22. 22.

    Steudel R, Strauss E (1984) Homocyclic selenium molecules and related cations. In: Emeleus HJ, Sharpe AG (eds) Advances in inorganic chemistry and radiochemistry. Academic Press, Orlando, pp 135–166

    Google Scholar 

  23. 23.

    Misawa M, Suzuki S (1978) Ring-chain transition in liquid selenium by a disordered chain model. J Phys Soc Jpn 44:1612–1618

    CAS  Article  Google Scholar 

  24. 24.

    Kim K et al (1974) Crystallization of amorphous selenium films. II. Photo and impurity effects. J Appl Phys 45:3447–3452

    CAS  Article  Google Scholar 

  25. 25.

    Kim K et al (1973) Crystallization of amorphous selenium films. I. Morphology and kinetics. J Appl Phys 44:5237–5244

    CAS  Article  Google Scholar 

  26. 26.

    Minaev V (2005) Structural and phase transformations in condensed selenium. J Optoelectron Adv M 7:1717–1741

    CAS  Google Scholar 

  27. 27.

    Cooper W (1969) The physics of selenium and tellurium. Pergamon Press, Oxford

    Google Scholar 

  28. 28.

    Chiera N et al (2015) Vapor deposition coating of fused silica tubes with amorphous selenium. Thin Solid Films 592:8–13

    CAS  Article  Google Scholar 

  29. 29.

    Zvara I (1985) Simulation of thermochromatographic processes by the Monte Carlo method. Radiochim Acta 38:95–102

    CAS  Article  Google Scholar 

  30. 30.

    Haynes W (2016) CRC handbook of chemistry and physics. CRC Press, Taylor and Francis group, New York

    Google Scholar 

  31. 31.

    Barin I (1990) Thermochemical data of pure elements. VCH Verlagsgesellschaft mbH, Weinheim

    Google Scholar 

  32. 32.

    Gobrecht H (1970) Transformations of red amorphous and monoclinic selenium. J Phys Chem Solids 31:2145–2148

    CAS  Article  Google Scholar 

  33. 33.

    Pershina V et al (2005) Relativistic effects on experimentally studied gas-phase properties of the heaviest elements. Chem Phys 311:139–150

    CAS  Article  Google Scholar 

  34. 34.

    Eichler R et al (2007) Chemical properties of element 112. Nature 447:72–75

    CAS  Article  Google Scholar 

  35. 35.

    Soverna S et al (2005) Thermochromatographic studies of mercury and radon on transition metal surfaces. Radiochim Acta 93:1–8

    CAS  Article  Google Scholar 

  36. 36.

    Ziegler J (2010) SRIM—the stopping and range of ions in matter. Nucl Instrum Meth B 268:1818–1823

    CAS  Article  Google Scholar 

  37. 37.

    Düllmann C et al (2002) IVO, a device for in situ volatilization and on-line detection of products from heavy ion reactions. Nucl Instrum Meth A 479:631–639

    Article  Google Scholar 

  38. 38.

    Siiskonen T et al (2005) Advanced simulation code for alpha spectrometry. Nucl Instrum Meth A 550:425–434

    CAS  Article  Google Scholar 

  39. 39.

    Soverna S (2004) Attempt to chemically characterize element 112. Doctoral Thesis, Universität Bern

  40. 40.

    Legros A et al (1995) Effect on water impurity on the crystallization of vacuum evaporated Se. J Appl Phys 78:3048–3051

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to R. Eichler.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chiera, N.M., Aksenov, N.V., Albin, Y.V. et al. Interaction of elemental mercury with selenium surfaces: model experiments for investigations of superheavy elements copernicium and flerovium. J Radioanal Nucl Chem 311, 99–108 (2017).

Download citation


  • Mercury
  • Adsorption
  • Selenium surface
  • Isothermal gas chromatography
  • Superheavy elements
  • Model experiments for Cn and Fl