Skip to main content

A modified method for the sequential determination of 210Po and 210Pb in Ca-rich material using liquid scintillation counting


This research describes methods for the sequential determination of 210Pb and 210Po activity concentrations in Ca-rich ash samples collected from oil shale-fired power plants in Estonia. The procedure involves digestion of Ca-rich ash samples in a microwave digestion system, radiochemical separation of 210Pb and 210Po and their measurements. All samples, blanks and standards were measured by liquid scintillation counting (Quantulus 1220). The method was tested using IAEA (International Atomic Energy Agency) RGU-1 and IAEA-444 reference materials. Spectral calibration/peak identification which included the optimization of α/β discrimination system (pulse shape analyser), and recovery have been made by 209Po and 210Pb standard solutions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    IAEA (2004) Nuclear technology review 2004. International Atomic Energy Agency, Vienna

    Google Scholar 

  2. 2.

    Kim C-K, Martin P, Fajgelj A (2008) Quantification of measurement uncertainty in the sequential determination of 210Pb and 210Po by liquid scintillation counting and alpha-particle spectrometry. Accredit Qual Assur 13:691–702

    CAS  Article  Google Scholar 

  3. 3.

    Klaus Froehlich (2010) Environmental radionuclides, 1st edn. Accessed 25 May 2016

  4. 4.

    Baskaran M (2011) Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a review. J Environ Radioact 102:500–513

    CAS  Article  Google Scholar 

  5. 5.

    Fowler SW (2011) 210Po in the marine environment with emphasis on its behaviour within the biosphere. J Environ Radioact 102:448–461

    CAS  Article  Google Scholar 

  6. 6.

    Henricsson F, Ranebo Y, Holm E, Roos P (2011) Aspects on the analysis of 210Po. J Environ Radioact 102:415–419

    CAS  Article  Google Scholar 

  7. 7.

    Persson BRR, Holm E (2011) Polonium-210 and lead-210 in the terrestrial environment: a historical review. J Environ Radioact 102:420–429

    CAS  Article  Google Scholar 

  8. 8.

    Betti M, Aldave de las Heras L, Janssens A et al (2004) Results of the European Commission Marina II study: part II–effects of discharges of naturally occurring radioactive material. J Environ Radioact 74:255–277

    CAS  Article  Google Scholar 

  9. 9.

    Sanchez-Cabeza JA, Masqué P, Ani-Ragolta I (1998) 210Pb and 210Po analysis in sediments and soils by microwave acid digestion. J Radioanal Nucl Chem 227:19–22

    CAS  Article  Google Scholar 

  10. 10.

    Carvalho FP (2011) Polonium (210Po) and lead (210Pb) in marine organisms and their transfer in marine food chains. J Environ Radioact 102:462–472

    CAS  Article  Google Scholar 

  11. 11.

    Realo E, Realo K, Jõgi J (1996) Releases of natural radionuclides from oil-shale-fired power plants in Estonia. J Environ Radioact 33:77–89

    CAS  Article  Google Scholar 

  12. 12.

    Martínez-Aguirre A, García-León M (1997) Radioactive impact of phosphate ore processing in a wet marshland in southwestern Spain. J Environ Radioact 34:45–57

    Article  Google Scholar 

  13. 13.

    Fujiyoshi R, Sawamura S (2004) Mesoscale variability of vertical profiles of environmental radionuclides (40K, 226Ra, 210Pb and 137Cs) in temperate forest soils in Germany. Sci Total Environ 320:177–188

    CAS  Article  Google Scholar 

  14. 14.

    Jia G, Belli M, Liu S et al (2006) The fractionation and determination procedures for the speciation of 210Pb and 210Po in soil samples. Anal Chim Acta 562:51–58

    CAS  Article  Google Scholar 

  15. 15.

    Matthews KM, Kim C-K, Martin P (2007) Determination of 210Po in environmental materials: a review of analytical methodology. Appl Radiat Isot 65:267–279

    CAS  Article  Google Scholar 

  16. 16.

    Vaasma T, Kiisk M, Meriste T, Tkaczyk AH (2014) The enrichment of natural radionuclides in oil shale-fired power plants in Estonia—the impact of new circulating fluidized bed technology. J Environ Radioact 129:133–139

    CAS  Article  Google Scholar 

  17. 17.

    Dueñas C, Fernández MC, Carretero J et al (2005) Deposition velocities and washout ratios on a coastal site (southeastern Spain) calculated from 7Be and 210Pb measurements. Atmos Environ 39:6897–6908

    Article  Google Scholar 

  18. 18.

    Mil-Homens M, Stevens RL, Boer W et al (2006) Pollution history of heavy metals on the Portuguese shelf using 210Pb-geochronology. Sci Total Environ 367:466–480

    CAS  Article  Google Scholar 

  19. 19.

    Yamamoto M, Sakaguchi A, Sasaki K et al (2006) Seasonal and spatial variation of atmospheric 210Pb and 7Be deposition: features of the Japan Sea side of Japan. J Environ Radioact 86:110–131

    CAS  Article  Google Scholar 

  20. 20.

    Mabit L, Benmansour M, Abril JM et al (2014) Fallout 210Pb as a soil and sediment tracer in catchment sediment budget investigations: a review. Earth-Science Rev 138:335–351

    CAS  Article  Google Scholar 

  21. 21.

    Sanchez-Cabeza J-A, Ruiz-Fernández AC, Ontiveros-Cuadras JF et al (2014) Monte Carlo uncertainty calculation of 210Pb chronologies and accumulation rates of sediments and peat bogs. Quat Geochronol 23:80–93

    Article  Google Scholar 

  22. 22.

    Walling D, Collins A, Sichingabula H (2003) Using unsupported lead-210 measurements to investigate soil erosion and sediment delivery in a small Zambian catchment. Geomorphology 52:193–213

    Article  Google Scholar 

  23. 23.

    Zapata F (2003) The use of environmental radionuclides as tracers in soil erosion and sedimentation investigations: recent advances and future developments. Soil Tillage Res 69:3–13

    Article  Google Scholar 

  24. 24.

    Šťastná K, Fiala V, John J (2010) Preparation of samples for alpha-spectrometry by direct evaporation of extracted species. J Radioanal Nucl Chem 286:735–739

    Article  Google Scholar 

  25. 25.

    Vajda N, Martin P, Kim C-K (2012) Alpha spectrometry (Chapt. 6). In: Handbook of Radioactivity Analysis, 3rd edn. pp 363–422. doi:10.1016/B978-0-12-384873-4.00006-2

  26. 26.

    Vajda N, LaRosa J, Zeisler R et al (1997) A novel technique for the simultaneous determination of 210Pb and 210Po using a crown ether. J Environ Radioact 37:355–372

    CAS  Article  Google Scholar 

  27. 27.

    Vrecek P, Benedik L, Pihlar B (2004) Determination of 210Pb and 210Po in sediment and soil leachates and in biological materials using a Sr-resin column and evaluation of column reuse. Appl Radiat Isot 60:717–723

    CAS  Article  Google Scholar 

  28. 28.

    (2007) 210Pb-Comments on evaluation of decay data. In: Laboratory National Henri Becquerel. Accessed 25 May 2016

  29. 29.

    L’Annunziata MF, Kessler MJ (2012) Liquid scintillation analysis: principles and practice (Chapt. 7). In: L’Annunziata MF (ed) Handbook of Radioactivity Analysis, 3rd edn. Elsevier, Amsterdam. doi:10.1016/B978-0-12-384873-4.00007-4

  30. 30.

    Blanco P, Lozano JC, Gómez Escobar V, Vera Tomé F (2004) A simple method for 210Pb determination in geological samples by liquid scintillation counting. Appl Radiat Isot 60:83–88

    CAS  Article  Google Scholar 

  31. 31.

    IAEA (2014) A procedure for the sequential determination of radionuclides in environmental samples

  32. 32.

    Pérez Sánchez D, Martin Sánchez A, Jurado Vargas M (2003) 210Pb and 210Po determination in environmental samples using liquid scintillation counting and alpha spectrometry. Czechoslov J Phys 53:A25–A30

    Article  Google Scholar 

  33. 33.

    Jaffe RL, Pattengill MD, Mascarello FG, Zare RN (1987) Ca+ HF: the anatomy of a chemical insertion reaction. J Chem Phys 86:6150

    CAS  Article  Google Scholar 

  34. 34.

    Biggin CD, Cook GT, MacKenzie AB, Pates JM (2002) Time-efficient method for the determination of 210Pb, 210Bi, and 210Po activities in seawater using liquid scintillation spectrometry. Anal Chem 74:671–677

    CAS  Article  Google Scholar 

  35. 35.

    Villa M, Hurtado S, Manjón G, García-Tenorio R (2007) Calibration and measurement of using two independent techniques. Radiat Meas 42:1552–1560. doi:10.1016/j.radmeas.2007.05.053

    CAS  Article  Google Scholar 

  36. 36.

    Currie LA (1968) Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal Chem 40:586–593

    CAS  Article  Google Scholar 

  37. 37.

    Sadi BB, Chen J, Kochermin V et al (2016) A faster sample preparation method for determination of polonium-210 in fish. J Radioanal Nucl Chem 308:843–850

    CAS  Article  Google Scholar 

Download references


This work was supported by the Estonian Research Council ETF grant (award number ETF9304). The authors also would like to thank Kaja Orupõld from the Estonian University of Life Sciences, Tartu for her cooperation and support in the laboratory.

Author information



Corresponding author

Correspondence to Banu Ozden.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ozden, B., Vaasma, T., Kiisk, M. et al. A modified method for the sequential determination of 210Po and 210Pb in Ca-rich material using liquid scintillation counting. J Radioanal Nucl Chem 311, 365–373 (2017).

Download citation


  • 210Po
  • 210Pb
  • Microwave digestion
  • Radiochemical separation
  • Strontium resin column
  • Liquid scintillation counting