Skip to main content
Log in

Macrocycles for the complexation of radiocesium: a concise review of crystallographic and computational studies

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

We review the crystallographic studies concerned with the complexes between cesium and different types of macrocycles. A detailed examination of the molecular structures indicates that the formation of several cesium–oxygen bonds is necessary in order for the macrocyle to capture a single Cs+ ion. In some cases, additional interactions such as cesium–arene and cesium–fluorine interactions may operate either alone or in combination with the above chemical bonds. Computational quantum chemistry studies based on experimental crystal structures represent a useful aid for elucidating the mechanism of binding and the role that explicit water molecules have in establishing ion–dipole interactions or H-bonds with the Cs+-macrocycle complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Steinhauser G, Brandl A, Johnson TE (2014) Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci Total Environ 470–471:800–817

    Article  Google Scholar 

  2. Beresford NA, Fesenko S, Konoplev A, Skuterud L, Smith JT, Voigt F (2016) Thirty years after the Chernobyl accident: what lessons have we learnt? J Env Radioact 157:77–89

    Article  CAS  Google Scholar 

  3. Povinec PP, Hirose K, Aoyama M (2013) Fukushima accident: radioactivity impact on the environment. Elsevier, Amsterdam

    Book  Google Scholar 

  4. Frank D, Higson S (2011) Macrocycles. Wiley, Chicester

    Google Scholar 

  5. Essington ME (2015) Soil and water chemistry: an integrative approach, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  6. Wang B, Anslyn EV (eds) (2011) Chemosensors: principles, strategies, and applications. Wiley, Chicester

    Google Scholar 

  7. Ladd M, Palmer R (2013) Structure determination by X-ray crystallography: analysis by X-ray and neutrons, 5th edn. Springer, Heidelberg

    Book  Google Scholar 

  8. Jensen F (2007) Introduction to computational chemistry, 2nd edn. Wiley, Chicester

    Google Scholar 

  9. Groom CR, Allen FH (2014) The Cambridge Structural Database in retrospect and prospect. Angew Chem Int Ed 53:662–671

    Article  CAS  Google Scholar 

  10. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  11. Gokel GW, Leevy WM, Weber ME (2004) Crown Ethers: sensors for ions and molecular scaffolds for materials and biological models. Chem Rev 104:2723–2750

    Article  CAS  Google Scholar 

  12. Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:7017–7036

    Article  CAS  Google Scholar 

  13. The Nobel Foundation. http://www.nobelprize.org. Accessed 30 May 2016

  14. Pedersen CJ (1988) The discovery of crown ethers (Nobel Lecture). Angew Chem Int Ed Engl 27:1021–1027

    Article  Google Scholar 

  15. Dobler M, Phizackerley RP (1974) Caesium thiocyanate complex of 1,4,7,10,13,16-hexaoxacyclooctadecane. Acta Cryst B 30:2748–2750

    Article  Google Scholar 

  16. Hasek J, Hlavata J, Huml K (1977) Crystal and molecular structure of a complex formed by caesium thiocyanate and 4-nitrobenzo-1,4,7,10,13,16-hexaoxacyclooctadecane (4-nitrobenzo-18-crown-6). Acta Cryst B 33:3372–3376

    Article  Google Scholar 

  17. Walbaum C, Pantenburg I, Meyer G (2007) Complexes of monovalent dibenzo-18-crown-6 cations with triiodide as anions. Z Anorg Allg Chem 633:1609–1617

    Article  CAS  Google Scholar 

  18. Nuss A, Jansen M (2006) Synthesis and crystal structure determination of Cs([18]crown-6)Au·8NH3. Z Naturforsch B 61:1205–1208

    Article  CAS  Google Scholar 

  19. Ponomarova VV, Rusanova JA, Rusanov EB, Domasevitch KV (2015) Unusual centrosymmetric structure of [M(18-crown-6)]+ (M = Rb, Cs, and NH4) complexes stabilized in an environment of hexachlorido-antimonate (V) anion. Acta Cryst C 71:867–872

    Article  CAS  Google Scholar 

  20. Liddle ST, Izod K (2004) Synthesis and characterization of 1,3-diphosphapropene and alkali-metal 1,3-diphosphallyl complexes and unexpected 1,3-rearrangement of a cesium 1,3-diphosphallyl complex to a cesium secondary phosphanide. Organometallics 23:5550–5559

    Article  CAS  Google Scholar 

  21. Clark M, Kellen CJ, Robinson KD, Zhang H, Yang Z-Y, Madappat KV, Fuller JW, Atwood JL, Thrasher JS (1992) Naked SF5 anion: the crystal and molecular structure of [Cs+ (18-crown-6)2][SF5 ]. Eur J Solid State Inorg Chem 29:809–833

    CAS  Google Scholar 

  22. Mahler J, Persson I (2012) A study of the hydration of the alkali metal ions in aqueous solution. Inorg Chem 51:425–438

    Article  Google Scholar 

  23. Rabe GW, Liable-Sands LM, Incarvito CD, Lam K-C, Rheingold AL (1999) Highly restricted dimensionality in cesium aryl phosphides. Organometallics 38:4342–4346

    CAS  Google Scholar 

  24. Bryan JC, Sachleben RA, Hay BP (1999) Structural aspects of cesium ion selectivity by tetrabenzo-24-crown-8. Inorg Chim Acta 290:86–94

    Article  CAS  Google Scholar 

  25. Boda A, Ali M, Shenoi MRK, Rao H, Ghosh SK (2011) DFT modeling on the suitable crown ether architecture for complexation with Cs+ and Sr2+ metal ions. J Mol Model 17:1091–1108

    Article  CAS  Google Scholar 

  26. Choi CM, Heo J, Kim NJ (2016) Binding selectivity of dibenzo-18-crown-6 for alkali metal cations in aqueous solution: a density functional theory study using a continuum solvation model. Chem Central J 6(84):1–8

    CAS  Google Scholar 

  27. Huang RH, Ward DL, Kuchenmeister ME, Dye JL (1987) The crystal structures of two cesides show that Cs is the largest monoatomic ion. J Am Chem Soc 109:5561–5563

    Article  CAS  Google Scholar 

  28. Graf E, Hosseini MW, De Cian A, Fischer J (1996) Simultaneous binding of boron and alkaline metal cations by a macrocyclic ligand bearing catechol units: structural analysis of borocryptates. Bull Soc Chim Fr 133:743–748

    CAS  Google Scholar 

  29. Gutsche DL (2008) Calixarenes: an introduction, 2nd edn. Royal Society of Chemistry, Cambridge

    Google Scholar 

  30. Morohashi N, Narumi F, Iki N, Hattori T, Miyano S (2006) Thiacalixarenes. Chem Rev 106:5291–5316

    Article  CAS  Google Scholar 

  31. Homden DM, Redshaw C (2008) The use of calixarenes in metal-based catalysis. Chem Rev 108:5086–5130

    Article  CAS  Google Scholar 

  32. Nimse SB, Kim T (2013) Biological applications of functionalized calixarenes. Chem Soc Rev 42:366–386

    Article  CAS  Google Scholar 

  33. Dalgarno SJ, Thallapally PK, Barbour LJ, Atwood JL (2006) Engineering void space in organic van der Waals crystals: calixarenes lead the way. Chem Soc Rev 36:236–245

    Article  Google Scholar 

  34. Mokhtari B, Pourabdollah K, Dallali N (2001) A review of calixarene applications in nuclear industries. J Radioanal Nucl Chem 287:921–934

    Article  Google Scholar 

  35. Sverker Hoegberg AG (1980) Two stereoisomeric macrocyclic resorcinol-acetaldehyde condensation products. J Org Chem 45:4498–4500

    Article  Google Scholar 

  36. Hof F, Craig SL, Nuckolls C, Rebek J (2002) Molecular encapsulation. Angew Chem Int Ed 41:1488–1508

    Article  CAS  Google Scholar 

  37. Tero TR, Nissinen M (2014) A perspective to resorcinarene crowns. Tetrahedron 70:1111–1123

    CAS  Google Scholar 

  38. Harrowfield JM, Ogden MI, Richmond WR, White AH (1991) Calixarene-cupped caesium: a coordination conundrums? J Chem Soc Chem Commun 17:1159–1161

    Article  Google Scholar 

  39. Delangle P, Mulatier J-C, Tinant B, Declercq JP, Dutasta JP (2001) Synthesis and binding properties of iiii (4i) stereoisomers of phosphonato cavitands—Cooperative effects in cation complexation in organic solvents. Eur J Org Chem 19:3695–3704

    Article  Google Scholar 

  40. Mendoza-Espinosa D, Martinez-Ortega BA, Quiroz-Guzman M, Golen JA, Rheingold AL, Hanna TA (2009) Synthesis, structures and full characterization of p-tert-butylcalix[5]arene mono-, di-, tri- and pentaanionic ligand precursors. J Organomet Chem 694:1509–1523

    Article  CAS  Google Scholar 

  41. Hanna TA, Liu L, Angeles-Boza AM, Kou X, Gutsche CD, Ejsmont K, Watson WH, Zakharov LN, Incarvito CD, Rheingold AL (2003) Synthesis, structures, and conformational characteristics of calixarene monoanions and dianions. J Am Chem Soc 125:6228–6238

    Article  CAS  Google Scholar 

  42. Ungaro R, Casnati A, Ugozzoli F, Pochini A, Dozol J-F, Hill C, Rouquette H (1994) 1,3-Dialkoxycalix[4]arenecrowns-6 in 1,3-alternate conformation: cesium-selective ligands that exploit cation-arene interactions. Angew Chem Int Ed Engl 33:1506–1509

    Article  Google Scholar 

  43. Thuery P, Nierlich M, Lamare V, Dozol J-F, Asfari Z, Vicens J (1996) Cesium iodide complex of 1,3-calix[4]-bis-crown-6. Acta Cryst C 52:2729–2731

    Article  Google Scholar 

  44. Kim SK, Lynch VM, Young NJ, Hay BP, Lee C-H, Kim JS, Moyer BA, Sessler JL (2012) KF and CsF recognition and extraction by a calix[4]crown-5 strapped calix[4]pyrrole multitopic receptor. J Am Chem Soc 134:20837–20843

    Article  CAS  Google Scholar 

  45. Sessler JL, Kim SK, Gross DE, Lee C-H, Kim JS, Lynch VM (2008) Crown-6-calix[4]arene-capped calix[4]pyrrole: an ion-pair receptor for solvent-separated CsF ions. J Am Chem Soc 130:13162–13166

    Article  CAS  Google Scholar 

  46. Anzenbacher P Jr, Jursikova K, Lynch VM, Gale PA, Sessler JL (1999) Calix[4]pyrroles containing deep cavities and fixed walls. Synthesis, structural studies, and anion binding properties of the isomeric products derived from the condensation of p-hydroxyacetophenone and pyrrole. J Am Chem Soc 121:11020–11021

    Article  CAS  Google Scholar 

  47. Sadhu B, Sundararajan M, Velmurugan G, Venuvanalingam P (2015) Elucidating the structures and cooperative binding mechanism of cesium salts to the multitopic ion-pair receptor through density functional theory calculations. Dalton Trans 44:15450–15462

    Article  CAS  Google Scholar 

  48. Freeman WA, Mock WL, Shih NY (1981) Cucurbituril. J Am Chem Soc 103:7367–7368

    Article  CAS  Google Scholar 

  49. Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L (2005) The cucurbit[n]uril family. Angew Chem Int Ed 44:4844–4870

    Article  CAS  Google Scholar 

  50. Behrend R, Meyer E, Rusche F (1905) Ueber Condensationsproducte aus Glycoluril und Formaldehyd. Liebigs Ann 339:1–37

    Article  Google Scholar 

  51. Whang D, Heo J, Park JH, Kim K (1998) A molecular bowl with metal ion as bottom: reversible inclusion of organic molecules in cesium ion complexed cucurbituril. Angew Chem Int Ed 37:78–80

    Article  CAS  Google Scholar 

  52. Chen WJ, Yu DH, Xiao X, Zhang Y-Q, Zhu QJ, Xue SF, Tao Z, Wei G (2011) Difference of coordination between alkali- and alkaline-earth-metal ions to a symmetrical α, α’, δ, δ’-tetramethylcucurbit[6]uril. Inorg Chem 50:6956–6964

    Article  CAS  Google Scholar 

  53. Hu YF, Chen K, Liu JX, Lin RL, Sun WQ, Xue SF, Zhu QJ, Tao Z (2012) Complexation of decamethylcucurbit[5]uril with alkali metal ions. Polyhedron 31:632–637

    Article  CAS  Google Scholar 

  54. Pichierri F (2004) Density functional study of cucurbituril and its sulfur analogue. Chem Phys Lett 390:214–219

    Article  CAS  Google Scholar 

  55. Pichierri F (2013) DFT study of caesium ion complexation by cucurbit[n]urils (n = 5-7). Dalton Trans 42:6083–6091

    Article  CAS  Google Scholar 

  56. Pichierri F (2016) Computational design of cucurbituril-acene hybrids for the optical detection of cesium ions: DFT and TD-DFT studies. Theor Chem Acc 135(61):1–11

    CAS  Google Scholar 

  57. Abrahams BF, FitzGerald NJ, Hudson TA, Robson R, Waters T (2009) Closed and open clamlike structures formed by hydrogen-bonded pairs of cyclotricatechylene anions that contain cationic “meat”. Angew Chem Int Ed 48:3129–3132

    Article  CAS  Google Scholar 

  58. Takemura H, Kon N, Kotoku M, Nakashima S, Otsuka K, Yasutake M, Shinmyozu T, Inazu T (2001) A study of C-F···M+ interaction: alkali metal complexes of the fluorine-containing cage compound. J Org Chem 66:2778–2783

    Article  CAS  Google Scholar 

  59. Plenio H, Diodone R, Badura D (1997) Synthesis and coordination chemistry of fluorine-containing cages. Angew Chem Int Ed Engl 36:156–158

    Article  CAS  Google Scholar 

  60. Aumann DC, Clooth G, Steffan B, Steglich W (1989) Complexation of cesium 137 by the cap pigments of the Bay Boletus (Xerocomus badius). Angew Chem Int Ed Engl 28:453–454

    Article  Google Scholar 

  61. Korovitch A, Mulon J-P, Souchon V, Leray I, Valeur B, Mallinger A, Nadal B, Le Gall T, Lion C, Ha-Duong N-T, El Hage Chahine JM (2010) Norbadione A: kinetics and thermodynamics of cesium uptake in aqueous and alcoholic media. J Phys Chem B 114:12655–12665

    Article  CAS  Google Scholar 

  62. Korovitch A, Le Roux A, Barbault F, Hémadi M, Ha-Duong N-T, Lion C, Wagner A, El Hage Chahine J-M (2013) A new series of Cs+, K+ and Na+ chelators: synthesis, kinetics, thermodynamics and modeling. Inorg Chim Acta 394:45–57

    Article  CAS  Google Scholar 

  63. Sakamaki T, Iitaka Y, Nawata Y (1977) The crystal and molecular structures of Cs+ complexes of tetranactin and nonactin. Acta Cryst B 33:52–59

    Article  Google Scholar 

  64. Steinrauf LK, Folting K (1984) The structure of valinomycin cesium picrate. Isr J Chem 24:290–296

    Article  CAS  Google Scholar 

  65. Makrlík E, Toman P, Vaňura P (2013) Complexation of the cesium cation with nonactin: extraction and DFT study. J Radioanal Nucl Chem 295:615–619

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Japan Society for the Promotion of Science (JSPS) “Grants-in-Aid for Scientific Research” (Kakenhi-C) Nr. 15K05580. Support from the Department of Applied Chemistry (Graduate School of Engineering) of Tohoku University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Pichierri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pichierri, F. Macrocycles for the complexation of radiocesium: a concise review of crystallographic and computational studies. J Radioanal Nucl Chem 311, 1251–1263 (2017). https://doi.org/10.1007/s10967-016-4968-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4968-1

Keywords

Navigation