Skip to main content
Log in

A 3He beam stop for minimizing gamma-ray and fast-neutron background

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Prompt gamma-ray activation analysis facilities with high neutron currents (≥109 s−1) generate triton-induced fast neutrons from 6Li-loaded collimators and beam stops at rates that damage gamma-ray detectors. We develop an alternative beam stop design using 3He gas that produces negligible gamma-ray and fast-neutron background following neutron absorption. Replacing a 6Li glass beam stop with a test cell containing 2.5 MPa cm of 3He reduced fast neutron production by 73 %. An optimal 3He beam stop design with a 100-µm-thick entrance window, modeled using MCNP6, enables operation of detectors closer to the beam stop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

  2. The neutron source is defined at the guide exit, with its divergences and spectrum obtained from guide simulations. MCNP6 tally results on a per-source-particle basis were multiplied by 1.55 × 1010 s−1, the neutron current at the guide exit (also determined by guide simulations).

References

  1. Paul R, Lindstrom R (2000) Prompt gamma-ray activation analysis: fundamentals and applications. J Radioanal Nucl Chem 243(1):181–189

    Article  CAS  Google Scholar 

  2. Molnár GL (2004) Handbook of prompt gamma activation. Analysis. doi:10.1007/978-0-387-23359-8

    Google Scholar 

  3. Canella L, Kudějová P, Schulze R et al (2011) Characterisation and optimisation of the new prompt gamma-ray activation analysis (PGAA) facility at FRM II. Nucl Instrum Methods A 636:108–113. doi:10.1016/j.nima.2011.01.126

    Article  CAS  Google Scholar 

  4. Chadwick MB, Herman M, Obložinský P et al (2011) ENDF/B-VII.1 Nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl Data Sheets 112:2887–2996. doi:10.1016/j.nds.2011.11.002

    Article  CAS  Google Scholar 

  5. Lone M, Santry D, Inglis W (1980) MeV neutron production from thermal neutron capture in Li and B compounds. Nucl Instrum Methods 174:521–529. doi:10.1016/0029-554X(80)91105-2

    Article  CAS  Google Scholar 

  6. Raudorf TW, Pehl R, Trammell RC, Wagner S (1984) Performance of reverse electrode HPGE coaxial detectors after light damage by fast neutrons. IEEE Trans Nucl Sci (United States) 31:1

    Article  Google Scholar 

  7. Leleux P, Albernhe F, Borrel V et al (2003) Neutron-induced nuclear reactions and degradation in germanium detectors. Astron Astrophys 411:L85–L90. doi:10.1051/0004-6361:20031366

    Article  CAS  Google Scholar 

  8. Paul RL, Lindstrom RM, Heald AE (1997) Cold neutron prompt gamma-ray activation analysis at NIST—recent developments. J Radioanal Nucl Chem 215:63–68. doi:10.1007/BF02109879

    Article  CAS  Google Scholar 

  9. Paul RL, Lindstrom RM, Brocker C, Mackey EA (2008) Design of a new instrument for cold neutron prompt gamma-ray activation analysis at NIST. J Radioanal Nucl Chem 278:697–701. doi:10.1007/s10967-008-1507-8

    Article  CAS  Google Scholar 

  10. Paul RL, Şahin D, Cook JC et al (2015) NGD cold-neutron prompt gamma-ray activation analysis spectrometer at NIST. J Radioanal Nucl Chem 304:189–193. doi:10.1007/s10967-014-3635-7

    Article  CAS  Google Scholar 

  11. Wolfs F, Freedman S, Nelson J et al (1989) Measurement of the 3He(n, γ)4He cross section at thermal neutron energies. Phys Rev Lett 63:2721–2724. doi:10.1103/PhysRevLett.63.2721

    Article  CAS  Google Scholar 

  12. Sears VF (1992) Neutron scattering lengths and cross sections. Neutron News 3:26–37. doi:10.1080/10448639208218770

    Article  Google Scholar 

  13. Stone CA, Blackburn DH, Kauffman DA et al (1994) 6Li-doped silicate glass for thermal neutron shielding. Nucl Instrum Methods A 349:515–520. doi:10.1016/0168-9002(94)91219-X

    Article  CAS  Google Scholar 

  14. Chen WC, Gentile TR, O’Donovan KV et al (2004) Polarized neutron reflectometry of a patterned magnetic film with a 3He analyzer and a position-sensitive detector. Rev Sci Instrum 75:3256–3263. doi:10.1063/1.1791312

    Article  CAS  Google Scholar 

  15. GE Lighting Component Sales, Bldg. 315D, 1975 Noble Rd., Cleveland, OH 44117. The largest standard GE180 tubing diameter is 16 mm; the 25 mm tubing was procured through a special glass run

  16. Goorley T, James M, Booth T et al (2012) Initial MCNP6 release overview. Nucl Technol 180:298–315. doi:10.13182/NT11-135

    Article  CAS  Google Scholar 

  17. Lindstrom RM (1994) Sum and Mean. Biol Trace Elem Res 43–45:597–603. doi:10.1007/BF02917362

    Article  Google Scholar 

  18. Shetty M, Şahin D (2016) Data acquisition and analysis software for gamma coincidence spectrometry. J Radioanal Nucl Chem. doi:10.1007/s10967-016-4762-0

    Google Scholar 

  19. Kosyak YG, Chekushina LV, Ermatov AS (2002) Spins and lifetimes of 74 Ge levels from (n, n′γ) reaction. Izv Akad Nauk Ross Akad Nauk Seriya Fiz 67:140–144

    Google Scholar 

  20. Lässer R, Klatt K-H (1983) Solubility of hydrogen isotopes in palladium. Phys Rev B 28:748–758. doi:10.1103/PhysRevB.28.748

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the assistance of the Research Facilities Operations Group staff of the NIST Center for Neutron Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danyal Turkoglu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 642 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turkoglu, D., Downing, R.G., Chen, W. et al. A 3He beam stop for minimizing gamma-ray and fast-neutron background. J Radioanal Nucl Chem 311, 1243–1249 (2017). https://doi.org/10.1007/s10967-016-4954-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4954-7

Keywords

Navigation