Skip to main content
Log in

Radiochemical separation of mostly short-lived neutron activation products

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

It is demonstrated that radiochemical separation in neutron activation analysis (RNAA) is usually the most effective means of optimization of the technique for many elements, if achieving the lowest detection limits and uncertainties are required. Examples are provided for low-level determination of vanadium, iodine, manganese, silicon, mercury, selenium in mostly biological materials. Further, it is also shown that RNAA is a superior tool for the low-level determination of natural radionuclides 232Th and 238U in shielding and construction materials for underground physics experiments on rare nuclear events, such as the search for neutrinoless double β-decay in SuperNEMO experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kučera J, Zeisler R (2004) Do we need radiochemical separation in activation analysis? J Radioanal Nucl Chem 262:255–260

    Article  Google Scholar 

  2. Spyrou NM (1981) Cyclic activation analysis—a review. J Radioanal Chem 61:211–242

    Article  CAS  Google Scholar 

  3. DeSilva KN, Chatt A (1983) A method to improve precision and detection limits for determining trace elements through short-lived nuclides. J Trace Microprobe Tech 1:307–337

    CAS  Google Scholar 

  4. Egan A (1987) Detection limits and precisions in various irradiation and counting regimes. J Radioanal Nucl Chem 110:47–50

    Article  CAS  Google Scholar 

  5. Kučera J (1972) Epithermal neutron activation analysis of trace elements in biological materials. Radiochem Radioanal Lett 38:229–246

    Google Scholar 

  6. Kučera J, Řanda Z (2001) Possibilities of low-level determination of silicon in biological materials by activation analysis. Fres J Anal Chem 370:241–245

    Article  Google Scholar 

  7. Kučera J, Byrne AR (1993) Nickel determination in biological materials at ultratrace level by fast neutron radiochemical neutron activation analysis. J Radioanal Nucl Chem 168:201–2013

    Article  Google Scholar 

  8. Kučera J, Vobecký M, Zákoucký D, Soukal L, Vénos D (1997) Low level determination of thallium in biological and environmental reference materials by RNAA using several counting methods. J Radioanal Nucl Chem 217:131–137

    Article  Google Scholar 

  9. Rossbach M, Zeisler R, Woittiez JRW (1990) The use of Compton Suppression spectrometers for trace element studies in biological materials. Biol Trace Elem Res 26(27):63–73

    Article  Google Scholar 

  10. Wu D, Landsberger S (1994) Comparison of NAA methods to determine medium-lived radionuclides in NIST soil standard reference materials. J Radioanal Nucl Chem 179:155–164

    Article  CAS  Google Scholar 

  11. Landsberger S, Peshev S (1996) Compton suppression neutron activation analysis: past, present and future. J Radioanal Nucl Chem 202:201–224

    Article  CAS  Google Scholar 

  12. Amiel S (1981) Nondestructive activation analysis. Elsevier, Amsterdam

    Google Scholar 

  13. Kučera J (2007) Methodological developments and applications of neutron activation analysis. J Radioanal Nucl Chem 273:273–280

    Article  Google Scholar 

  14. Byrne AR, Kučera J (1991) Radiochemical neutron activation analysis of traces of vanadium: a comparison of prior dry anhing with post-irradiation wet ashing. Fresenius J Anal Chem 340:48–52

    Article  CAS  Google Scholar 

  15. Kučera J, Byrne AR, Mravcová A, Lener J (1992) Vanadium levels in hair and blood of normal and exposed persons. Sci Total Environ 15:191–205

    Google Scholar 

  16. Kučera J, Lener J, Mňuková J (1994) Vanadium levels in urine and cystine levels in fingernails and hair of exposed and normal persons. Biol Trace Elem Research 43–45:327–334

    Google Scholar 

  17. Sabbioni E, Kučera J, Pietra R, Vesterberg O (1996) A critical review on normal concentrations of vanadium in human blood, serum, and urine. Sci Total Environ 188:49–58

    Article  CAS  Google Scholar 

  18. Zeisler R, Tomlin BE, Murphy KE, Kučera J (2009) Neutron activation analysis with pre- and post-irradiation chemical separation for the value assignments of Al, V, and Ni in the new bovine liver SRM 1577C. J Radioanal Nucl Chem 282:69–74

    Article  CAS  Google Scholar 

  19. Kučera J, Krausová I (2007) Fast decomposition of biological and other materials for radiochemical activation analysis: a radiochemical study of element recoveries following alkaline-oxidative fusion. J Radioanal Nucl Chem 271:577–580

    Article  Google Scholar 

  20. Kučera J, Iyengar GV, Řanda Z, Parr RM (2004) Determination of iodine in Asian diets by epithermal and radiochemical neutron activation analysis. J Radioanal Nucl Chem 259:505–509

    Article  Google Scholar 

  21. Kučera J, Kameník J (2015) Improving iodine homogeneity in NIST SRM 1548a typical diet by cryogenic grinding. Accred Qual Assur 20:189–194

    Article  Google Scholar 

  22. Kučera J, Soukal L, Faltejsek J (1986) Low level determination of manganese in biological reference materials by neutron activation analysis. J Radioanal Nucl Chem 107:361–369

    Article  Google Scholar 

  23. Kučera J, Mizera J, Repinc U, Smodiš B (2006) Simultaneous low-level determination of iodine and manganese in biological materials by radiochemical neutron activation analysis. Czech J Phys 56:D151–D157

    Google Scholar 

  24. Kučera J, Bencko V, Tejral J, Borská L, Soukal L, Řanda Z (2004) Biomonitoring of occupational exposure: neutron activation determination of selected metals in the body tissues and fluids of workers manufacturing stainless steel vessels. J Radioanal Nucl Chem 259:7–11

    Article  Google Scholar 

  25. Kučera J, Zeisler R (2005) Low-level determination of silicon in biological materials using radiochemical neutron activation analysis. J Radioanal Nucl Chem 263:811–816

    Article  Google Scholar 

  26. Landsberger S, Peshev S, Becker DA (1994) Determination of silicon in biological and botanical reference materials by epithermal INAA and Compton suppression. Nucl Instrum Methods A 353:601–605

    Article  CAS  Google Scholar 

  27. Kučera J, Soukal L (1993) Determination of As, Cd, Cu, Hg, Mo, Sb, And Se in biological reference materials by radiochemical neutron activation analysis. J Radioanal Nucl Chem 168:185–199

    Article  Google Scholar 

  28. Sysalová J, Kučera J, Fikrle M, Drtinová B (2013) Determination of the total mercury in contaminated soils by direct solid sampling atomic absorption spectrometry using an AMA-254 device and radiochemical neutron activation analysis. Microchem J 110:691–694

    Article  Google Scholar 

  29. Alamin MB, Bejey AM, Kučera J, Mizera J (2006) Determination of mercury and selenium in consumed food items in Libya using instrumental and radiochemical NAA. J Radioanal Nucl Chem 270:143–146

    Article  CAS  Google Scholar 

  30. Rasmussen KL, Kučera J, Skytte L, Kameník J, Havránek V, Smolík J, Velemínský P, Lynnerup N, Brůžek J, Vellev J (2013) Was he murdered or was he not? Part I: Analyses of mercury in the remains of Tycho Brahe. Archaeometry 55:1187–1195

    Article  CAS  Google Scholar 

  31. Galinha C, Freitas MC, Pacheco AMG, Kameník J, Kučera J, Anawar HM, Coutinho J, Maçãs B, Almeida AS (2012) Selenium determination in cereal plants and cultivation soils by radiochemical neutron activation analysis. J Radioanal Nucl Chem 294:349–354

    Article  CAS  Google Scholar 

  32. Kučera J, Byrne AR, Mizera J, Lučaníková M, Řanda Z (2006) Development of a radiochemical neutron activation analysis procedure for determination of rhenium in biological and environmental samples at ultratrace level. J Radioanal Nucl Chem 269:251–257

    Article  Google Scholar 

  33. Kučera J, Drobník J (1982) Determination of platinum in urine and serum after the administration of cisplatin by neutron activation analysis. J Radioanal Chem 75:71–80

    Article  Google Scholar 

  34. Lučaníková M, Kučera J, Šebesta F, John J (2006) Use of new composite materials for the determination of Cu, Cd, Mo, As, and Sb in biological samples by radiochemical neutron activation analysis. J Radioanal Nucl Chem 269:463–468

    Article  Google Scholar 

  35. Řanda Z, Kučera J, Soukal L (2003) Elemental characterization of the new Czech meteorite Morávka by neutron and photon activation analysis. J Radioanal Nucl Chem 257:275–283

    Article  Google Scholar 

  36. Kučera J, Mizera J, Řanda Z, Vávrová M (2007) Pollution of agricultural crops with lanthanides, thorium and uranium studied by instrumental and radiochemical neutron activation analysis. J Radioanal Nucl Chem 271:581–587

    Article  Google Scholar 

  37. Byrne AR, Benedik L (1999) Applications of neutron activation analysis in determination of natural and man-made radionuclides, including 231Pa. Czech J Phys 49(Suppl S1):263–270

    Article  CAS  Google Scholar 

  38. Povinec PP, SuperNEMO collaboration (2016) Background constraints of the SuperNEMO experiment for neutrinoless double beta-decay searches. Nucl Instrum Methods A. doi:10.1016/j.nima.2016.06.104

    Google Scholar 

  39. Benedik L, Byrne AR (1995) Simultaneous determination of trace uranium and thorium by radiochemical neutron activation analysis. J Radioanal Nucl Chem 189:325–331

    Article  CAS  Google Scholar 

  40. Hou X, Olsson M, Togneri L, Englund S, Vaaraman K, Askljung Ch, Gottfridsson O, Hirvonen H, Öhlin H, Forsström M, Anders F, Lampén M (2016) Present status and perspective of radiochemical analysis of radionuclides in Nordic countries. J Radioanal Nucl Chem. doi:10.1007/s10967-016-4741-5

    Google Scholar 

  41. Clemenza M (2016) Low background neutron activation analysis: a high sensitivity technique for physics of rare events. In: International conference on radioanalytical and nuclear chemistry RANC-2016, 10–16 April, Budapest, Hungary, Book of abstracts, p 62

Download references

Acknowledgments

This work was supported by the Czech Science Foundation, Grant P108/12/G108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kučera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kučera, J., Kameník, J. & Povinec, P.P. Radiochemical separation of mostly short-lived neutron activation products. J Radioanal Nucl Chem 311, 1299–1307 (2017). https://doi.org/10.1007/s10967-016-4930-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4930-2

Keywords

Navigation