Skip to main content
Log in

Adsorption of uranium(VI) from aqueous solution using phosphonic acid-functionalized silica magnetic microspheres

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The phosphonic acid-functionalized silica magnetic microspheres (PA-SMM) were successfully synthesized for U(VI) adsorption. The PA-SMM exhibited higher adsorption capacity for U(VI) compared to unmodified silica magnetic microspheres due to the high affinity of phosphonic acid groups with U(VI). The adsorption was dominated by inner sphere surface chelation and kinetically followed the pseudo-second-order equation. The adsorption isotherms fitted well to the Langmuir model, with the maximum adsorption capacity of 76.9 mg/g at 298 K and pH 5.0. Thermodynamic parameters indicated the endothermic and spontaneous nature of U(VI) adsorption. The PA-SMM could be regenerated using 0.2 M EDTA-0.5 M HNO3 as the eluent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bhalara PD, Punetha D, Balasubramanian K (2014) A review of potential remediation techniques for uranium (VI) ion retrieval from contaminated aqueous environment. J Environ Chem Eng 2:1621–1634

    Article  CAS  Google Scholar 

  2. Anirudhan TS, Rijith S (2012) Synthesis and characterization of carboxyl terminated poly(methacrylic acid) grafted chitosan/bentonite composite and its application for the recovery of uranium(VI) from aqueous media. J Environ Radioact 106:8–19

    Article  CAS  Google Scholar 

  3. Jin J, Huang X, Zhou L, Peng J, Wang Y (2015) In situ preparation of magnetic chitosan resins functionalized with triethylene-tetramine for the adsorption of uranyl(II) ions. J Radioanal Nucl Chem 303:797–806

    Article  CAS  Google Scholar 

  4. Rojo I, Seco F, Rovira M, Giménez J, Cervantes G, Martí V, De Pablo J (2009) Thorium sorption onto magnetite and ferrihydrite in acidic conditions. J Hazard Mater 385:474–478

    CAS  Google Scholar 

  5. Yang S, Zong P, Ren X, Wang Q, Wang X (2012) Rapid and highly efficient preconcentration of Eu(III) by core–shell structured Fe3O4@ humic acid magnetic nanoparticles. ACS Appl Mater Interfaces 4:6891–6900

    Article  CAS  Google Scholar 

  6. He F, Wang H, Wang Y, Wang X, Zhang H, Li H, Tang J (2013) Magnetic Th(IV)-ion imprinted polymers with salophen schiff base for separation and recognition of Th(IV). J Radioanal Nucl Chem 295:167–177

    Article  CAS  Google Scholar 

  7. Wang J, Peng R, Yang J, Liu Y, Hu X (2011) Preparation of ethylenediamine-modified magnetic chitosan complex for adsorption of uranyl ions. Carbohydr Polym 84:1169–1175

    Article  CAS  Google Scholar 

  8. Chen H, Deng C, Zhang X (2010) Synthesis of Fe3O4@SiO2@PMMA core–shell–shell magnetic microspheres for highly efficient enrichment of peptides and proteins for MALDI-ToF MS. Angew Chem Int Ed 49:607–611

    Article  CAS  Google Scholar 

  9. Park M, Seo S, Lee IS, Jung JH (2010) Ultraefficient separation and sensing of mercury and methylmercury ions in drinking water by using aminonaphthalimide-functionalized Fe3O4@SiO2 core/shell magnetic nanoparticles. Chem Commun 46:4478–4480

    Article  CAS  Google Scholar 

  10. Kuang SP, Wang ZZ, Liu J, Wu ZC (2013) Preparation of triethylene-tetramine grafted magnetic chitosan for adsorption of Pb(II) ion from aqueous solutions. J Hazard Mater 260:210–219

    Article  CAS  Google Scholar 

  11. Milyutin V, Gelis V, Nekrasova N, Melnyk I, Dudarko O, Sliesarenko V, Zub YL (2014) Sorption of actinide ions onto mesoporous phosphorus-containing silicas. Radiochemistry 56:262–266

    Article  CAS  Google Scholar 

  12. Kadous A, Didi MA, Villemin D (2010) A new sorbent for uranium extraction: ethylenediamino tris (methylenephosphonic) acid grafted on polystyrene resin. J Radioanal Nucl Chem 284:431–438

    Article  CAS  Google Scholar 

  13. Sureshkumar M, Das D, Mallia M, Gupta P (2010) Adsorption of uranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads. J Hazard Mater 184:65–72

    Article  CAS  Google Scholar 

  14. Wang X, Yuan L, Wang Y, Li Z, Lan J, Liu Y, Feng Y, Zhao Y, Chai Z, Shi W (2012) Mesoporous silica SBA-15 functionalized with phosphonate and amino groups for uranium uptake. Sci China Chem 55:1705–1711

    Article  CAS  Google Scholar 

  15. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  16. Dudarko OA, Gunathilake C, Wickramaratne NP, Sliesarenko VV, Zub YL, Górka J, Dai S, Jaroniec M (2015) Synthesis of mesoporous silica-tethered phosphonic acid sorbents for uranium species from aqueous solutions. Colloid Surf A 482:1–8

    Article  CAS  Google Scholar 

  17. Kalapathy U, Proctor A, Shultz J (2000) A simple method for production of pure silica from rice hull ash. Bioresour Technol 73:257–262

    Article  CAS  Google Scholar 

  18. Venkatesan KA, Sukumaran V, Antony MP, Rao PRV (2004) Extraction of uranium by amine, amide and benzamide grafted covalently on silica gel. J Radioanal Nucl Chem 260:443–450

    Article  CAS  Google Scholar 

  19. Vivero-Escoto JL, Carboni M, Abney CW, Lin W (2013) Organo-functionalized mesoporous silicas for efficient uranium extraction. Micropor Mesopor Mat 180:22–31

    Article  CAS  Google Scholar 

  20. Qiu H, Lv L, Pan B, Zhang Q, Zhang W, Zhang Q (2009) Critical review in adsorption kinetic models. J Zhejiang Univ Sci A 10:716–724

    Article  CAS  Google Scholar 

  21. Akkaya R (2013) Removal of radioactive elements from aqueous solutions by adsorption onto polyacrylamide-expanded perlite: equilibrium, kinetic, and thermodynamic study. Desalination 321:3–8

    Article  CAS  Google Scholar 

  22. Donia AM, Atia AA, Moussa EM, El-Sherif AM, El-Magied MOA (2009) Removal of uranium(VI) from aqueous solutions using glycidyl methacrylate chelating resins. Hydrometallurgy 95:183–189

    Article  CAS  Google Scholar 

  23. Wang H, Ma L, Cao K, Geng J, Liu J, Song Q, Yang X, Li S (2012) Selective solid-phase extraction of uranium by salicylideneimine-functionalized hydrothermal carbon. J Hazard Mater 229:321–330

    Article  Google Scholar 

  24. Rahmati A, Ghaemi A, Samadfam M (2012) Kinetic and thermodynamic studies of uranium (VI) adsorption using Amberlite IRA-910 resin. Ann Nucl Energy 39:42–48

    Article  CAS  Google Scholar 

  25. Zhang X, Jiao C, Wang J, Liu Q, Li R, Yang P, Zhang M (2012) Removal of uranium (VI) from aqueous solutions by magnetic Schiff base: kinetic and thermodynamic investigation. Chem Eng J 198:412–419

    Article  Google Scholar 

  26. Zong P, Wang S, Zhao Y, Wang H, Pan H, He C (2013) Synthesis and application of magnetic graphene/iron oxides composite for the removal of U (VI) from aqueous solutions. Chem Eng J 220:45–52

    Article  CAS  Google Scholar 

  27. Zhao G, Wen T, Yang X, Yang S, Liao J, Hu J, Shao D, Wang X (2012) Preconcentration of U (VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans 41:6182–6188

    Article  CAS  Google Scholar 

  28. Hazer O, Kartal Ş (2010) Use of amidoximated hydrogel for removal and recovery of U (VI) ion from water samples. Talanta 82:1974–1979

    Article  CAS  Google Scholar 

  29. Venkatesan K, Sukumaran V, Antony M, Vasudeva Rao P (2004) Extraction of uranium by amine, amide and benzamide grafted covalently on silica gel. J Radioanal Nucl Chem 260:443–450

    Article  CAS  Google Scholar 

  30. Han R, Zou W, Wang Y, Zhu L (2007) Removal of uranium(VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect. J Environ Radioact 93:127–143

    Article  CAS  Google Scholar 

  31. Bryant DE, Stewart DI, Kee TP, Barton CS (2003) Development of a functionalized polymer-coated silica for the removal of uranium from groundwater. Environ Sci Technol 37:4011–4016

    Article  CAS  Google Scholar 

  32. Rezaei A, Khani H, Masteri-Farahani M, Rofouei MK (2012) A novel extraction and preconcentration of ultra-trace levels of uranium ions in natural water samples using functionalized magnetic-nanoparticles prior to their determination by inductively coupled plasma-optical emission spectrometry. Anal Methods 4:4107–4114

    Article  CAS  Google Scholar 

  33. Tian G, Geng J, Jin Y, Wang C, Li S, Chen Z, Wang H, Zhao Y, Li S (2011) Sorption of uranium (VI) using oxime-grafted ordered mesoporous carbon CMK-5. J Hazard Mater 190:442–450

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Fund Program (21366001; 21166001; 11375043) and the International Scientific and Technological Cooperation Projects (2015DFR61020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Zou, H., Wang, Y. et al. Adsorption of uranium(VI) from aqueous solution using phosphonic acid-functionalized silica magnetic microspheres. J Radioanal Nucl Chem 310, 1155–1163 (2016). https://doi.org/10.1007/s10967-016-4878-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4878-2

Keywords

Navigation