Skip to main content
Log in

Trace element content of Zingiber officinalis and Salvia officinalis medicinal plants from Algeria

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The leaves of Salvia officinalis and rhizomes of Zingiber officinalis, traditional Algerian medicinal plants, were analyzed by instrumental neutron activation analysis. The mass fractions of Fe (940, 1176 µg/g), Mn (LLD, 0.716 mg/g), Na (0.58, 0.28 mg/g), K (19, 23 mg/g), Cl (1.8, 0.59 mg/g), Zn (16.4, 55.6 µg/g) and Eu (LLD, 0.31 µg/g) were determined in Zingiber officinalis and Salvia officinalis respectively. The essential elements found in these plants may confer some of their beneficial properties, but the high level of Eu, potential toxic element found in the sage leaves, may require further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Steiner (ed.) R P (1986) Folk medicine—the art and the science. American Chemical Society, Washington DC, p 223

  2. WHO-World Health Organization (1996) Annex II. Guidelines for the Assessment of Herbal Medicines (WHO Technical Report Series NO. 863) Geneva

  3. WHO-World Health Organization (2008) Traditional medicine fact sheet, Number 134

  4. British Medical Association (1993) Complementary medicine, new approaches to good practice. Oxford University Press, Oxford

    Google Scholar 

  5. WHO (2002b) Traditional medicine strategy (2002–2005). WHO/EDM/TRM/2002.1. Geneva, Switzerland

  6. Cosyns JP, Jadoul M, Squifflet JP, Wese FX, Ypersele Van, de Strihou C (1999) Urothelial lesions in Chinese-herb nephropathy. Am J Kidney Dis 33:1011–1017. doi:10.1016/S0272-6386(99)70136-8

    Article  CAS  Google Scholar 

  7. Ernst E (2002) Toxic heavy metals and undeclared drugs in Asian herbal medicines. Trends Pharmacol Sci 23:136–139. doi:10.1016/S0165-6147(00)01972-6

    Article  CAS  Google Scholar 

  8. Tomori WJ, Obijole OA (2000) Mineral composition of some less utilized vegetables in Nigeria. Afr J Sci Technol 1(12):153–157

    Google Scholar 

  9. Paranjpe P (2001) Indian medicinal plants, forgotten healers, a guide to ayurvedic herbal medicine. Chaukhamba Sanskrit Pratisthan, Delhi, p 316

    Google Scholar 

  10. Sivarajan VV, Balachandran I (1994) Ayurvedic drugs and their plant sources. Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi, p 570

    Google Scholar 

  11. Rajurkar NS, Damame MM (1998) Mineral content of medicinal plants used in treatment of diseases resulting from urinary tract disorders. Appl Radiat Isot 49:773

    Article  CAS  Google Scholar 

  12. Kimura K (1996) Role of essential trace elements in the disturbance of carbohydrate metabolism. Nippon Rinsho 54(1):79–84

    CAS  Google Scholar 

  13. Underwood EJ (1977) Trace elements in human and animal nutrition, 4th edn. Academic Press, New York, p 255

    Google Scholar 

  14. El Yzigi A, Hannan N, Raines DA (1991) Urinary excretion of chromium, copper and manganese in diabetes mellitus and associated disorders. Diabetes Res 18:129–134

    Google Scholar 

  15. Johri RK, Zutshi U (1992) An ayurvedic formulation of Trikatu and its constituents. J Ethnopharmacol 37:85

    Article  CAS  Google Scholar 

  16. Funtua II, Dim LA, Muazu S, Oyewale AO, Umar IM, Grass F, Gwozdz R (2003) Instrumental neutron activation analysis (INAA) of Guierasenegalensis (Combrataceae)—a tropical medicinal plant. Nig J Phys 9(15):105

    Google Scholar 

  17. Bode P (1996) Instrumental and organization aspects of a neutron activation analysis laboratory. Delft University of Technology, p 148

  18. Paul Choudhury R, Kumar A, Reddy AVR, Garg AN (2006) Thermal neutron activation analysis of essential and trace elements and organic constituents in Trikatu : ayurvedic formulation. J Radioanal Nucl Chem. doi:10.1007/s10967-007-1130-0

    Google Scholar 

  19. Bielicka–Gieldon A, Rylko E (2013) Estimation of metallic in herbs and spices available on the polish market. Pol J Environ Stud 22(4):1251–1256

    Google Scholar 

  20. Rajurkar NS, Pardeshi BM (1997) Analysis of some herbal plants from India used in the control of diabetes mellitus by NAA and AAS techniques. Appl Radiat Isot 48:1059

    Article  CAS  Google Scholar 

  21. Rim KT, Koo KH, Park JS (2013) Toxicological evaluations of rare earths and their health impacts to workers, a literature review. Saf Health Work 4:12–26

    Article  CAS  Google Scholar 

  22. Li Xuesong, Hristozova G, Nekhoroshkov PS, Frontasyeva MV (2015) Neutron activation analysis of constituent elements of edible and medicinal plant of iron stick yam (Dioscorea opposite Thunb). IRJPE-Health 2(11):182–190

    Google Scholar 

  23. Bonner FW, Bridjes JW, James W (1983) Toxicological properties of trace elements. In: Rose J (ed) Trace elements in health. Butterworth & Co, London, pp 1–16

    Chapter  Google Scholar 

  24. Kratochvil B, Motkosky N (1986) Determination of trace aluminum concentration and homogeneity in biological reference material TORT-1 by instrumental neutron activation analysis and graphite furnace atomic absorption spectroscopy. Can J Chem 65:1047–1050

    Article  Google Scholar 

  25. Toto RD, Hulter HN, Mackie S, Sebastian A (1984) Renal tubular acidosis induced by dietary chloride. Kidney Int 25:26

    Article  CAS  Google Scholar 

  26. Sackmann B, Neher E (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol 46:455

    Article  Google Scholar 

  27. Naga Raju GJ, Sarita P, Ramana Murty GAV, Ravi Kumar M, Seetharami Reddy B, John Charles M, Lakshminarayana S, Seshi Reddy T, Bhuloka Reddy S, Vijayan V (2006) Estimation of trace elements in some anti-diabetic medicinal plants using PIXE technique. Appl Radiat Isot 64:893–900

    Article  CAS  Google Scholar 

  28. Reddy MB, Chidambaram MV, Bates GW (1987) In: Winkelmann G, van der Helm D, Neilands JB (eds) Iron transport in microbes, plants and animals. Wiley-VCH, New York, p 429

    Google Scholar 

  29. Van der Strate BW, Beljaars L, Molema G, Harmsen MC, Meijer DK (2001) Antiviral activities of lactoferrin. Antivir Res 52:225

    Article  Google Scholar 

  30. Bhaskaram P (2002) Micronutrient malnutrition, infection, and immunity. Nutr Rev 60:S40

    Article  Google Scholar 

  31. Korc M (1983) Manganese action on pancreatic protein synthesis in normal and diabetic rats. Am J Physiol 245:628–634

    Google Scholar 

  32. Devi NK, Sharma NH, Kumar S (2008) Estimation of essential and trace elements in some medicinal plants by PIXE and PIGE techniques. Nucl Instrum Methods Phys Res B 266:1605–1610

    Article  CAS  Google Scholar 

  33. Reddy PRK, Reddy SJ (1997) Elemental mass fractions in medicinally important leafy materials. Chemosphere 34:2193–2212

    Article  CAS  Google Scholar 

  34. Singh V, Garg AN (1997) Availability of essential trace elements in Ayurvedic Indian medicinal herbs using instrumental neutron activation analysis. Appl Radiat Isot 48:97

    Article  CAS  Google Scholar 

  35. O’Dell BL, Sunde RA (1997) (eds.) Handbook of nutritionally essential mineral elements. Marcel Dekker Inc, New York

  36. Sizer F, Whitney E (1999) Nutrition concepts and controversies, 8th edn. Wadsworth Publishing Company, Belmont

    Google Scholar 

  37. Lokhande R, Singare P, Andhele M, Acharya R (2010) Study of some Indian medicinal plants by application of INAA and AAS techniques. Nat Sci 2(1):26–32

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Lamari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamari, Z., Larbi, R. & Negache, H. Trace element content of Zingiber officinalis and Salvia officinalis medicinal plants from Algeria. J Radioanal Nucl Chem 309, 17–22 (2016). https://doi.org/10.1007/s10967-016-4858-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4858-6

Keywords

Navigation