Skip to main content

The effect of counting conditions on pure beta emitter determination by Cherenkov counting

Abstract

The Cherenkov counting efficiencies measured by three commercially available liquid scintillation counters, Triathler, Tri-Carb 3180, Hidex 300 SL were compared. The influences of energy of pure beta emitters, volume, and solvent as well as instrument type on Cherenkov counting efficiency were studied. The best Cherenkov counting efficiencies are on the Hidex 300 SL and when methanol is used as a solvent. It could be concluded that the sensitivities of low-level versions of Tri-Carb and Hidex 300 SL are comparable. Based on the overall results obtained it has been concluded that the TDCR Cherenkov counting is well suited for routine quantitative determination of low activities of high energetic beta emitters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Parker RP (1974) Cerenkov counting and other special topics. In: Crook MA, Johnson P (eds) Liquid scintillating counting. Heyden, London, pp 237–252

    Google Scholar 

  2. 2.

    Chu TC, Wang JJ, Lin YM (1998) Radiostrontium analytical method using crown-ether compound and Cerenkov counting and its applications in environmental monitoring. Appl Radiat Isot 49:1671–1675

    CAS  Article  Google Scholar 

  3. 3.

    Dulanská S, Remenec B, Mátel Ľ et al (2011) Pre-concentration and determination of 90Sr in radioactive wastes using solid phase extraction techniques. J Radioanal Nucl Chem 288:705–708

    Article  Google Scholar 

  4. 4.

    Tayeb M, Dai X, Corcoran EC, Kelly DG (2014) Evaluation of interferences on measurements of 90Sr/90Y by TDCR Cherenkov counting technique. J Radioanal Nucl Chem 300:409–414

    CAS  Article  Google Scholar 

  5. 5.

    Rao DD, Mehendarge ST, Chandramouli S et al (2000) Application of Cherenkov radiation counting for determination of 90Sr in environmental samples. J Environ Radioact 48:49–57

    CAS  Article  Google Scholar 

  6. 6.

    Temple S (2015) Liquid scintillation counting: how has it advanced over the years and what does the future hold? Bioanalysis 7:503–505

    CAS  Article  Google Scholar 

  7. 7.

    Broda R (2003) A review of the triple-to-double coincidence ratio (TDCR) method for standardizing radionuclides. Appl Radiat Isot Data Instrum Methods Use Agric Ind Med 58:585–594

    CAS  Google Scholar 

  8. 8.

    Broda R, Cassette P, Kossert K (2007) Radionuclide metrology using liquid scintillation counting. Metrologia 44:S36

    CAS  Article  Google Scholar 

  9. 9.

    Simpson BRS, Morris WM (2004) The standardization of 33P by the TDCR efficiency calculation technique. Appl Radiat Isot 60:465–468

    CAS  Article  Google Scholar 

  10. 10.

    Wanke C, Kossert K, Nähle OJ (2012) Investigations on TDCR measurements with the HIDEX 300 SL using a free parameter model. Appl Radiat Isot Data Instrum Methods Use Agric Ind Med 70:2176–2183

    CAS  Google Scholar 

  11. 11.

    Jäggi M, Eikenberg J (2014) Comparison of the Tri-Carb and Hidex 300 SL technique using measurements of 241Pu and 90Sr on various samples. Appl Radiat Isot 93:120–125

    Article  Google Scholar 

  12. 12.

    Gudelis A, Vinčiūnas A, Butkus P, Pranaitis M (2012) Measurements of some radionuclides using a new TDCR system and an ultra low-level conventional LSC counter in CPST, Lithuania. Appl Radiat Isot 70:2204–2208

    CAS  Article  Google Scholar 

  13. 13.

    Tayeb M, Dai X, Corcoran EC, Kelly DG (2015) Rapid determination of 90Sr from 90Y in seawater. J Radioanal Nucl Chem 304:1043–1052

    CAS  Article  Google Scholar 

  14. 14.

    Olfert JM, Dai X, Kramer-Tremblay S (2014) Rapid determination of 90Sr/90Y in water samples by liquid scintillation and Cherenkov counting. J Radioanal Nucl Chem 300:263–267

    CAS  Article  Google Scholar 

  15. 15.

    Bobin C, Thiam C, Bouchard J, Jaubert F (2010) Application of a stochastic TDCR model based on Geant4 for Cherenkov primary measurements. Appl Radiat Isot 68:2366–2371

    CAS  Article  Google Scholar 

  16. 16.

    Laboratoire National Henri Becquerel Recommended Data by Laboratoire National Henri Becquerel. http://www.nucleide.org/DDEP_WG/DDEPdata.htm. Accessed 21 May 2015

  17. 17.

    Passo CJ Jr, Kessler MJ (1993) Selectable delay before burst—a novel feature to enhance low-leveling counting performance. In: Noakes JE, Schonhfer F, Polach HA (eds) Advances in liquid scintillation spectrometry. Radiocarbon, Tucson, pp 51–57

    Google Scholar 

  18. 18.

    Perkin Elmer (2009) QuantaSmart for Tri-Carb Liquid Scintillation Analyzer (Models B2810TR, B2910TR, B3110TR, and B3180TR/SL): Reference Manual

  19. 19.

    Hidex 300 SL Automatic TDCR Liquid Scintillation Counter, Hidex Company. http://hidex.com/wp-content/uploads/2015/09/Hidex_300SL_brochure_1908_2015_WebRes.pdf. Accessed 20 Oct 2015

  20. 20.

    Kellogg TF (1983) The effect of sample composition and vial type on Cerenkov counting in a liquid scintillation counter. Anal Biochem 134:137–143

    CAS  Article  Google Scholar 

  21. 21.

    Milanović I, Grahek Ž (2014) Semi-automated procedure for the determination of 89,90Sr in environmental samples by Cherenkov counting. J Radioanal Nucl Chem 303:1453–1457

    Article  Google Scholar 

  22. 22.

    L’Annunziata MF (2012) Chapter 15—Cherenkov counting. In: L’Annunziata MF (ed) Handbook of radioactivity analysis, 3rd edn. Academic Press, Amsterdam, pp 935–1019

    Chapter  Google Scholar 

  23. 23.

    Al-Masri MS (1996) Cerenkov counting technique. J Radioanal Nucl Chem 207:205–213. doi:10.1007/BF02036540

    CAS  Article  Google Scholar 

  24. 24.

    Curie LA (1995) Nomenclature in evaluation of analytical methods including detection and quantification capabilities. (IUPAC recommendation. Pure Appl Chem 67(10):1699–1723

    Google Scholar 

  25. 25.

    Wisser S, FCI (2016) Personal communication, February 17, 2016

  26. 26.

    Vaca PF, Manjón G, Garcia-León M (1998) Efficiency calibration of a liquid scintillation counter for 90Y cherenkov counting. Nucl Instrum Methods Phys Res Sect Accel Spectrom Detect Assoc Equip 406:267–275

    CAS  Article  Google Scholar 

  27. 27.

    Razdolescu AC, Cassette P (2004) Standardization of tritiated water and 204Tl by TDCR liquid scintillation counting. Appl Radiat Isot 60:493–497

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ivana Coha.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Coha, I., Neufuss, S., Grahek, Ž. et al. The effect of counting conditions on pure beta emitter determination by Cherenkov counting. J Radioanal Nucl Chem 310, 891–903 (2016). https://doi.org/10.1007/s10967-016-4853-y

Download citation

Keywords

  • TDCR Cherenkov efficiency
  • Pure beta emitters
  • Hidex 300 SL
  • Tri-Carb 3180 TR/SL
  • Triathler multilabel counter