Journal of Radioanalytical and Nuclear Chemistry

, Volume 310, Issue 2, pp 805–815 | Cite as

Surfactant modification and adsorption properties of clinoptilolite for the removal of pertechnetate from aqueous solutions

  • Sonja Milićević
  • Ljiljana Matović
  • Đorđe Petrović
  • Anđelka Đukić
  • Vladan Milošević
  • Divna Đokić
  • Ksenija KumrićEmail author


Natural clinoptilolite modified with a cationic surfactant stearyldimethylbenzylammonium chloride (SDBAC) was used as an adsorbent for the removal of pertechnetate from aqueous solutions. Adsorption studies were performed in a batch system. The effects of various experimental parameters (amount of surfactant loading, contact time, solution pH, competing anions) on the removal efficiency of TcO4 were investigated. SDBAC-clinoptilolite with organo-bilayer was successfully used to remove TcO4 from aqueous solutions in the pH range of 5.0-8.0. ReO4 as an analogue of TcO4 was used to model the isotherms. Adsorption capacity of the SDBAC-clinoptilolite and the mechanism of ReO4 (TcO4 ) sorption were also determined.


Adsorption 99Tc Surfactant SDBAC Organo-modified clinoptilolite 



We acknowledge the support to this work provided by the Ministry of Education, Science and Technological Development of Serbia through the projects TR 033007, III 45012 and III 45006.


  1. 1.
    Shi K, Hou X, Roos P, Wu W (2012) Determination of technetium-99 in environmental samples: a review. Anal Chim Acta 709:1–20CrossRefGoogle Scholar
  2. 2.
    Vinsova H, Konirova R, Koudelkova M, Jedinakova-Krizova V (2004) Sorption of technetium and rhenium on natural sorbents under aerobic conditions. J Radioanal Nucl Chem 261(2):407–413CrossRefGoogle Scholar
  3. 3.
    Jaisi DP, Dong H, Plymale AE, Frederickson JK, Zachara JM, Heald S, Liu C (2009) Reduction and long-term immobilization of technetium by Fe(II) associated with clay mineral nontronite. Chem Geol 264:127–138CrossRefGoogle Scholar
  4. 4.
    Hercigonja VR, Maksin DD, Nastasović BA, Trifunović SS, Glodić BP, Onjia EA (2012) Adsorptive removal of technetium-99 using macroporous poly(GMA-co-EGDMA) modified with diethylene triamine. J Appl Polym Sci 123:1273–1282CrossRefGoogle Scholar
  5. 5.
    Galamboš M, Daňo M, Viglašová Krivosudský L, Rosskopfová O, Novák I, Berek D, Rajec P (2015) Effect of competing anions on pertechnetate adsorption by activated carbon. J Radioanal Nucl Chem 304:1219–1224CrossRefGoogle Scholar
  6. 6.
    Ito K, Akiba K (1991) Adsorption of pertechnetate anion on active carbon from acids and their salt solutions. J Radioanal Nucl Chem 152(2):381–390CrossRefGoogle Scholar
  7. 7.
    Wang Y, Gao H, Yeredla R, Xu H, Abrecht M (2007) Control of pertechnetate sorption on activated carbon by surface functional groups. J Colloid Interface Sci 305:209–217CrossRefGoogle Scholar
  8. 8.
    Liang L, Gu B, Yin X (1996) Removal of technetium-99 from contaminated groundwater with sorbents and reductive materials. Sep Technol 6:111–122CrossRefGoogle Scholar
  9. 9.
    Suzuki T, Fujii Y, Yan W, Mimura H, Koyama S, Ozawa M (2009) Adsorption behavior of VII group elements on tertiary pyridine resin in hydrochloric acid solution. J Radioanal Nucl Chem 282:641–644CrossRefGoogle Scholar
  10. 10.
    Ming WD, Mumpton AF (1989) In: Dixon BJ, Weed BS (eds) Minerals in soil environment, 2nd edn. Soil Science Society of America, MadisonGoogle Scholar
  11. 11.
    Vujaković DA, Tomašević-Čanović RM, Daković SA, Dondur TV (2000) The adsorption of sulphate, hydrogenchromate and dihydrogenphosphate anions on surfactant-modified clinoptilolite. Appl Clay Sci 17:265–277CrossRefGoogle Scholar
  12. 12.
    Lemić J, Kovačević D, Tomašević-Čanović M, Kovačević D, Stanić T, Pfend R (2006) Removal of atrazine, lindane and diazinone from water by organo-zeolites. Water Res 40:1079–1085CrossRefGoogle Scholar
  13. 13.
    Warchoł J, Misaelides P, Petrus R, Zamboulis D (2006) Preparation and application of organo-modified zeolitic material in the removal of chromates and iodides. J Hazard Mater 137:1410–1416CrossRefGoogle Scholar
  14. 14.
    Sullivan JE, Carey WJ, Bowman SR (1998) Thermodynamics of cationic surfactant sorption onto natural clinoptilolite. J Colloid Interface Sci 206:369–380CrossRefGoogle Scholar
  15. 15.
    Chao H-P, Chen S-H (2012) Adsorption characteristics of both cationic and oxyanionic metal ions on hexadecyltrimethylammonium bromide-modified NaY zeolite. Chem Eng J 193–194:283–289CrossRefGoogle Scholar
  16. 16.
    Barczyk K, Mozgawa W, Król M (2014) Studies of anions sorption on natural zeolites. Spectrochim Acta A 133:876–882CrossRefGoogle Scholar
  17. 17.
    Chutia P, Kato S, Kojima T, Satokawa S (2009) Adsorption of As(V) on surfactant-modified natural zeolites. J Hazard Mater 162:204–211CrossRefGoogle Scholar
  18. 18.
    Bhardway D, Sharma M, Sharma P, Tomar R (2012) Synthesis and surfactant modification of clinoptilolite and montmorillonite for the removal of nitrate and preparation of slow release nitrogen fertilizer. J Hazard Mater 227–228:292–300CrossRefGoogle Scholar
  19. 19.
    de Gennaro B, Catalanotti L, Bowman SR, Mercurio M (2014) Anion exchange selectivity of surfactant modified clinoptilolite-rich tuff for environmental remediation. J Colloid Interface Sci 430:178–183CrossRefGoogle Scholar
  20. 20.
    Jansson SO, Modin R, Schill G (1974) Two phase titration of organic ammonium ions with lauryl sulphate and methyl yellow as indicator. Talanta 21(9):905–918CrossRefGoogle Scholar
  21. 21.
    Ming DW, Dixon JB (1987) Quantitative determination of clinoptilolite in soils by a cation-exchange capacity method. Clays Clay Miner 35:463–468CrossRefGoogle Scholar
  22. 22.
    Li Z, Bowman RS (1997) Counterion effects on the sorption of cationic surfactant and chromate on natural clinoptilolite. Environ Sci Technol 31:2407–2412CrossRefGoogle Scholar
  23. 23.
    Kang MJ, Rhee SW, Moon H, Neck V, Fanghänel Th (1996) Sorption of MO4 (M = Tc, Re) on Mg/Al layered double hydroxide by anion exchange. Radiochim Acta 75(3):169–174CrossRefGoogle Scholar
  24. 24.
    Lemić J, Milošević S, Vukašinoić M, Radosavljević-Mihajlović A, Kovačević D (2006) Surface modification of a zeolite and the influence of pH and ionic strength on the desorption of an amine. J Serb Chem Soc 71(11):1161–1172CrossRefGoogle Scholar
  25. 25.
    Uchida Y, Hishiya S, Fujii N, Kohmura K, Nakayama T, Tanaka H, Kikkawa T (2006) Effect of moisture adsorption on the properties of porous-silica ultralow-k films. Microelectron Eng 83:2126–2129CrossRefGoogle Scholar
  26. 26.
    Yariv S (1992) In: Schrader ME, Loeb G (eds) Modern approach to wettability. Plenum Press, New YorkGoogle Scholar
  27. 27.
    Watson JHP, Ellwood DC (2003) The removal of the pertechnetate ion and actinides from radioactive waste streams at Hanford, Washington, USA and Sellafield, Cumbria, UK: the role of iron-sulfide-containing adsorbent materials. Nucl Eng Des 226:375–385CrossRefGoogle Scholar
  28. 28.
    Kim E, Benedetti MF, Boulègue J (2004) Removal of dissolved rhenium by sorption onto organic polymers: study of rhenium as an analogue of radioactive technetium. Water Res 38:448–454CrossRefGoogle Scholar
  29. 29.
    Zhang P-C, Krumhans JL, Brady PV (2000) Boehmite sorbs perrhenate and pertechnetate. Radiochim Acta 88(6):369–373Google Scholar
  30. 30.
    Schick J, Caullet P, Paillaud J, Patarin J, Mangold-Callarec C (2010) Batch-wise nitrate removal from water on a surfactant-modified zeolite. Microporous Mesoporous Mater 132:395–400CrossRefGoogle Scholar
  31. 31.
    Rajec P, Rosskopfová O, Galamboš M, Frišták V, Soja G, Dafnomili A, Noli F, Đukić A, Lj Matović (2016) Sorption and desorption of pertechnetate on biochar under static batch and dynamic conditions. J Radioanal Nucl Chem. doi: 10.1007/s10967-016-4811-8 Google Scholar
  32. 32.
    Rajec P, Galamboš M, Daňo M, Rosskopfová O, Čaplovičová M, Hudec P, Horňáček M, Novák I, Berek D, Čaplovič L (2015) Preparation and characterization of adsorbent based on carbon for pertechnetate adsorption. J Radioanal Nucl Chem 303:277–286CrossRefGoogle Scholar
  33. 33.
    Zhan Y, Lin J, Zhu Z (2011) Removal of nitrate from aqueous solution using cetylpyridinium bromide (CPB) modified zeolite as adsorbent. J Hazard Mater 186:1972–1978CrossRefGoogle Scholar
  34. 34.
    Wan Ngah WS, Fatinathan S (2010) Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies. J Environ Manag 91:958–969CrossRefGoogle Scholar
  35. 35.
    Mozgawa W, Krόl M, Bajd T (2011) IR spectra in the studies of anions sorption on natural sorbents. J Mol Struct 993:109–114CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Sonja Milićević
    • 1
  • Ljiljana Matović
    • 2
  • Đorđe Petrović
    • 2
  • Anđelka Đukić
    • 2
  • Vladan Milošević
    • 1
  • Divna Đokić
    • 2
  • Ksenija Kumrić
    • 2
    Email author
  1. 1.Institute for Technology of Nuclear and Other Mineral Raw MaterialsBelgradeSerbia
  2. 2.Vinča Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia

Personalised recommendations