Fifteen years of success: user access programs at the Budapest prompt-gamma activation analysis laboratory

Abstract

The prompt-γ activation analysis (PGAA) laboratory of the Budapest Neutron Centre has been actively involved in national, international collaborations and EU-funded transnational access programs since 1999. The main applications are in material science, nuclear data measurement, method development, cultural heritage science and geology. PGAA was found to be ideal for the analysis of many light and medium-Z elements as major and minor components (down to 10–100 ppm), plus some traces, like H, B, Cl, Hg, noble metals and rare-earth elements. Being a real-time probing method, it is also possible to generate time- or spatially-resolved data. This paper reviews our activities in the past fifteen years, presents highlights of user-driven research projects and gives a summary about currently running and future access programs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Molnár GL (ed) (2004) Handbook of prompt gamma activation analysis with neutron beams. Kluwer Academic Publisher, Dordrecht, pp 1–423

    Google Scholar 

  2. 2.

    Lehmann EH, Vontobel P, Frei G, Kuehne G, Kaestner A (2011) How to organize a neutron imaging user lab? 13 years of experience at PSI, CH. Nucl Instrum Methods Phys Res A 651:1–5

    CAS  Article  Google Scholar 

  3. 3.

    Révay Zs, Kudějová P, Kleszcz K, Söllradl S, Genreith C (2015) In-beam activation analysis facility at MLZ, Garching. Nucl Instrum Methods A 799:114–123

    Article  Google Scholar 

  4. 4.

    Paul RL, Sahin D, Cook JC, Brocker C, Lindstrom RM, O’Kelly DJ (2015) NGD cold-neutron prompt gamma-ray activation analysis spectrometer at NIST. J Radioanal Nucl Chem 304:189–193

    CAS  Article  Google Scholar 

  5. 5.

    Molnár G, Belgya T, Dabolczi L, Fazekas B, Révay Zs, Veres Á, Bikit I, Kis Z, Östör J (1997)  The new prompt gamma-activation analysis facility at Budapest. J Radioanal Nucl Chem 215:111–115

    Article  Google Scholar 

  6. 6.

    Belgya T, Révay Zs, Fazekas B, Héjja I, Dabolczi L, Molnár GL, Kis Z, Östör J, Kaszás Gy (1997) In: Molnár G, Belgya T, Révay Zs (eds) Proceedings of 9th international symposium on capture gamma-ray spectroscopy and related topics, Budapest, Hungary, 8–12 October. Springer, Budapest, p 826

  7. 7.

    Rosta L, Belgya T, Cser L, Grosz T, Kaszás G, Molnár G, Révay Z, Török G (1997) Neutron guide system at the Budapest Research Reactor. Physica B 234:1196

    Article  Google Scholar 

  8. 8.

    Révay Zs, Belgya T, Kasztovszky Zs, Weil JL, Molnár GL (2004) Cold neutron PGAA facility at Budapest. Nucl Instrum Methods B 213:385

    Article  Google Scholar 

  9. 9.

    Ember PP, Belgya T, Weil JL, Molnár GL (2002) Coincidence measurement setup for PGAA and nuclear structure studies. Appl Radiat Isot 57:573–577

    CAS  Article  Google Scholar 

  10. 10.

    Révay Zs, Belgya T, Szentmiklósi L, Kis Z (2008) Recent developments and applications at the prompt gamma activation analysis facility at Budapest. J Radioanal Nucl Chem 278:643–646

    Article  Google Scholar 

  11. 11.

    Szentmiklósi L, Belgya T, Révay Z, Kis Z (2010) Upgrade of the prompt-gamma activation analysis (PGAA) and the neutron induced prompt-gamma spectroscopy (NIPS) facilities at the Budapest Research Reactor. J Radioanal Nucl Chem 286:501–505

    Article  Google Scholar 

  12. 12.

    Belgya T, Kis Z, Szentmiklósi L, Kasztovszky Z, Festa G, Andreanelli L, De Pascale MP, Pietropaolo A, Kudejova P, Schulze R, Materna T (2008) A new PGAI–NT setup at the NIPS facility of the Budapest Research Reactor. J Nucl Radioanal Chem 278(3):713–718

    CAS  Article  Google Scholar 

  13. 13.

    Belgya T, Kis Z, Szentmiklósi L, Kasztovszky Z, Kudejova P, Schulze R, Materna T, Festa G, Caroppi PA (2008) First elemental imaging experiments on a combined PGAI and NT setup at the Budapest Research Reactor. J Nucl Radioanal Chem 278(3):751–754

    CAS  Article  Google Scholar 

  14. 14.

    Szentmiklósi L, Kis Z, Belgya T, Berlizov AN (2013) On the design and installation of a Compton-suppressed HPGe spectrometer at the Budapest neutron-induced prompt gamma spectroscopy (NIPS) facility. J Nucl Radioanal Chem 298(3):1605–1611

    Article  Google Scholar 

  15. 15.

    Kis Z, Szentmiklosi L, Belgya T (2015) NIPS–NORMA station—a combined facility for neutron-based nondestructive element analysis and imaging at the Budapest Neutron Centre. Nucl Instrum Methods Phys Res A 779:116–123

    CAS  Article  Google Scholar 

  16. 16.

    Révay Zs, Firestone RB, Belgya T, Molnár GL (2004) Catalog and atlas of prompt gamma rays. In: Molnár GL (ed) Handbook of prompt gamma activation analysis with neutron beams. Kluwer Academic Publishers, Dordrecht, pp 173–364

    Google Scholar 

  17. 17.

    Fazekas B, Molnár G, Belgya T, Dabolczi L, Simonits A (1997) Introducing HYPERMET-PC for automatic analysis of complex gamma-ray spectra. J Nucl Radioanal Chem 215(2):271–277

    CAS  Article  Google Scholar 

  18. 18.

    Révay Z (2009) Determining elemental composition using prompt gamma activation analysis. Anal Chem 81:6851–6859

    Article  Google Scholar 

  19. 19.

    Revay Z, Belgya T, Szentmiklosi L, Kis Z, Wootsch A, Teschner D, Swoboda M, Schlogl R, Borsodi J, Zepernick R (2008) In situ determination of hydrogen inside a catalytic reactor using prompt gamma activation analysis. Anal Chem 80(15):6066–6071

    CAS  Article  Google Scholar 

  20. 20.

    Teschner D, Borsodi J, Wootsch A, Revay Z, Havecker M, Knop-Gericke A, Jackson SD, Schlogl R (2008) The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 320(5872):86–89

    CAS  Article  Google Scholar 

  21. 21.

    Kovnir K, Armbrüster M, Teschner D, Venkov T, Szentmiklósi L, Jentoft FC, Knop-Gericke A, Grin Yu, Schlögl R (2009) In situ surface characterization of the intermetallic compound PdGa—a highly selective hydrogenation catalyst. Surf Sci 603:1784–1792

    CAS  Article  Google Scholar 

  22. 22.

    Armbruster M, Kovnir K, Friedrich M, Teschner D, Wowsnick G, Hahne M, Gille P, Szentmiklosi L, Feuerbacher M, Heggen M, Girgsdies F, Rosenthal D, Schlogl R, Grin Y (2012) Al13Fe4 as a low-cost alternative for palladium in heterogeneous hydrogenation. Nat Mater 11(8):690–693

    CAS  Article  Google Scholar 

  23. 23.

    Teschner D, Farra R, Yao LD, Schlogl R, Soerijanto H, Schomacker R, Schmidt T, Szentmiklosi L, Amrute AP, Mondelli C, Perez-Ramirez J, Novell-Leruth G, Lopez N (2012) An integrated approach to Deacon chemistry on RuO2-based catalysts. J Catal 285(1):273–284

    CAS  Article  Google Scholar 

  24. 24.

    Teschner D, Novell-Leruth G, Farra R, Knop-Gericke A, Schlogl R, Szentmiklosi L, Hevia MG, Soerijanto H, Schomacker R, Perez-Ramirez J, Lopez N (2012) In situ surface coverage analysis of RuO2-catalysed HCl oxidation reveals the entropic origin of compensation in heterogeneous catalysis. Nat Chem 4(9):739–745

    CAS  Article  Google Scholar 

  25. 25.

    Farra R, García-Melchor M, Eichelbaum M, Hashagen M, Frandsen W, Allan J, Girgsdies F, Szentmiklósi L, López N, Teschner D (2013) Promoted ceria: a structural, catalytic, and computational study. ACS Catal 3(10):2256–2268

    CAS  Article  Google Scholar 

  26. 26.

    Moser M, Vilé G, Colussi S, Krumeich F, Teschner D, Szentmiklósi L, Trovarelli A, Perez-Ramirez J (2015) Structure and reactivity of ceria-zirconia catalysts for bromine and chlorine production via the gas-phase oxidation of hydrogen halides. J Catal 331:128–137

    CAS  Article  Google Scholar 

  27. 27.

    Mukherji D, Gilles R, Karge L, Strunz P, Beran P, Eckerlebe H, Stark A, Szentmiklósi L, Mácsik Z, Schumacher G, Zizak I, Hofmann M, Hoelzel M, Rosler J (2014) Neutron and synchrotron probes in the development of Co–Re-based alloys for next generation gas turbines with an emphasis on the influence of boron additives. J Appl Crystallogr 47:1417–1430

    CAS  Article  Google Scholar 

  28. 28.

    Mukherji D, Rösler J, Wehrs J, Strunz P, Beran P, Gilles R, Hofmann M, Hoelzel M, Eckerlebe H, Szentmiklósi L, MácSik Z (2013) Application of in situ neutron and X-ray measurements at high temperatures in the development of Co–Re-based alloys for gas turbines. Metall Mater Trans A 44(1):22–30

    CAS  Article  Google Scholar 

  29. 29.

    Mukherji D, Rösler J, Krueger M, Heilmaier M, Bölitz M-C, Völkl R, Glatzel U, Szentmiklósi L (2012) Effects of boron addition on microstructure and mechanical properties of Co–Re-based high temperature alloys. Scr Mater 66:60–63

    CAS  Article  Google Scholar 

  30. 30.

    Hosseini AM, Tungler A, Schay Z, Szabo S, Kristof J, Szeles E, Szentmiklosi L (2012) Comparison of precious metal oxide/titanium monolith catalysts in wet oxidation of wastewaters. Appl Catal B 127:99–104

    CAS  Article  Google Scholar 

  31. 31.

    Pamukchieva V, Szekeres A, Todorova K, Fabian M, Svab E, Revay Z, Szentmiklosi L (2009) Evaluation of basic physical parameters of quaternary Ge.Sb–(S, Te) chalcogenide glasses. J Noncryst Solids 355(50–51):2485–2490

    CAS  Article  Google Scholar 

  32. 32.

    Käppeler F, Belgya T, Dillmann I, Domingo Pardo C, Giesen U, Heil M, Lederer C, Petrich D, Uberseder E (2011) EFNUDAT synergies in astrophysics. In: Chiaveri E (ed) Proceedings of the final scientific EFNUDAT workshop, 30 August–2 September 2010. European Laboratory for Particle Physics: CERN, Geneva, p 9–15

  33. 33.

    Rossbach M, Genreith C, Randriamalala T, Mauerhofer E, Revay Z, Kudejova P, Söllradl S, Belgya T, Szentmiklosi L, Firestone RB, Hurst AM, Bernstein LA, Sleaford B, Escher JE (2015) TANDEM: a mutual cooperation effort for transactinide nuclear data evaluation and measurement. J Nucl Radioanal Chem 304:1359–1363

    CAS  Article  Google Scholar 

  34. 34.

    Genreith C, Rossbach M, Mauerhofer E, Belgya T, Caspary G (2013) Measurement of thermal neutron capture cross sections of Np-237 and Pu-242 using prompt gamma neutron activation. J Nucl Radioanal Chem 296(2):699–703

    CAS  Article  Google Scholar 

  35. 35.

    Belgya T, Bouland O, Noguere G, Plompen A, Schillebeeckx P, Szentmiklosi L (2007) The thermal neutron capture cross section of 129I. In: International conference on nuclear data for science and technology, 2008. EDP Sciences, Niza, p 631–634

  36. 36.

    Hurst AM, Firestone RB, Basunia MS, Sleaford B, Summers N, Escher J, Révay Z, Szentmiklósi L, Belgya T (2014) A structural evaluation of the tungsten isotopes via thermal neutron capture. Phys Rev C 89(1):014606

    Article  Google Scholar 

  37. 37.

    Borella A, Belgya T, Kopecky S, Gunsing F, Moxon MC, Rejmund M, Schillebeeckx P, Szentmiklósi L (2011) Determination of the 209Bi(n, γ)210Bi and 209Bi(n, γ)210m,gBi reaction cross sections in a cold neutron beam. Nucl Phys A 850(1):1–21

    Article  Google Scholar 

  38. 38.

    Massarczyk R, Schramm G, Junghans AR, Schwengner R, Anders M, Belgya T, Beyer R, Birgersson E, Ferrari A, Grosse E, Hannaske R, Kis Z, Kögler T, Kosev K, Marta M, Szentmiklósi L, Wagner A, Weil JL (2013) Electromagnetic dipole strength up to the neutron separation energy from 196Pt(γ, γ′) and 195Pt(n, γ) reactions. Phys Rev C 87:044306

    Article  Google Scholar 

  39. 39.

    Schramm G, Massarczyk R, Junghans AR, Belgya T, Beyer R, Birgersson E, Grosse E, Kempe M, Kis Z, Kosev K, Krticka M, Matic A, Schilling KD, Schwengner R, Szentmiklosi L, Wagner A, Weil JL (2012) Dipole strength in Se-78 below the neutron separation energy from a combined analysis of Se-77(n, γ)and Se-78(γ, γ′) experiments. Phys Rev C 85(1):014311

    Article  Google Scholar 

  40. 40.

    Wallner A, Belgya T, Bichler M, Buczak K, Dillmann I, Käppeler F, Lederer C, Mengoni A, Quinto F, Steier P, Szentmiklósi L (2014) Novel method to study neutron capture of U-235 and U-238 simultaneously at keV energies. Phys Rev Lett 112(19):192501.6

    Article  Google Scholar 

  41. 41.

    Wallner A, Buczak K, Belgya T, Bichler M, Coquard L, Dillmann I, Forstner O, Golser R, Käppeler F, Kutschera W, Lederer C, Mengoni A, Priller A, Reifarth R, Steier P, Szentmiklosi L (2010) Precise measurement of the neutron capture reaction 54Fe(n, γ)55Fe via AMS, in Nuclear Physics in Astrophysics IV. 2010, Journal of Physics Conference Series 202: Lab. Nazionali di Frascati with Lab. Nazionali del Gran Sasso, 8–12 June 2009, p 012020

  42. 42.

    Oberstedt S, Belgya T, Billnert R, Borcea R, Cano-Ott D, Göök A, Hambsch FJ, Karlsson J, Kis Z, Martinez T, Oberstedt A, Szentmiklósi L, Takács K (2010) Correlation measurements of fission–fragment properties. In: EFNUDAT user and collaboration workshop: measurements and models of nuclear reactions, EPJ web of conferences 8, Paris, France, 25–27 May 2010, p 03005

  43. 43.

    Oberstedt S, Billnert R, Belgya T, Borcea R, Bryś T, Geerts W, Göök A, Hambsch F-J, Kish Z, Martinez Perez T, Oberstedt A, Szentmiklósi L, Vidali M (2014) New prompt fission γ-ray data in response to the OECD/NEA high priority request. Nucl Data Sheets 119:225–228

    CAS  Article  Google Scholar 

  44. 44.

    Oberstedt A, Belgya T, Billnert R, Borcea R, Bryå T, Geerts W, Göök A, Hambsch FJ, Kis Z, Martinez T, Oberstedt S, Szentmiklosi L, Takàcs K, Vidali M (2013) Improved values for the characteristics of prompt-fission γ-ray spectra from the reaction 235U(nth, f). Phys Rev C 87(5):051602.5

    Article  Google Scholar 

  45. 45.

    Oberstedt S, Billnert R, Belgya T, Bryś T, Geerts W, Guerrero C, Hambsch F-J, Kis Z, Moens A, Oberstedt A, Sibbens G, Szentmiklósi L, Vanleeuw D, Vidali M (2014) High-precision prompt-γ-ray spectral data from the reaction 241Pu(nth, f). Phys Rev C 90(2):024618.6

    Article  Google Scholar 

  46. 46.

    Kiss V, Fischl K, Horváth E, Káli G, Kasztovszky Z, Kis Z, Maróti B, Szabó G (2015) Non-destructive analyses of bronze artefacts from Bronze Age Hungary using neutron-based methods. J Anal At Spectrom 30(3):685–693

    CAS  Article  Google Scholar 

  47. 47.

    Mödlinger M, Piccardo P, Kasztovszky Z, Kovács I, Szokefalvi-Nagy Z, Káli G, Szilágyi V (2013) Archaeometallurgical characterization of the earliest European metal helmets. Mater Charact 79:22–36

    Article  Google Scholar 

  48. 48.

    Rogante M, Kasztovszky Z, Manni A (2010) Prompt Gamma Activation Analysis of bronze fragments from archaeological artefacts. Not Neutroni Luce Sincrotrone 15(1):12–23

    Google Scholar 

  49. 49.

    Corsi J, Maroti B, Re A, Kasztovszky Z, Szentmiklosi L, Torbagyi M, Agostino A, Angelici D, Allegretti S (2015) Compositional analysis of a historical collection of Cisalpine Gaul’s coins kept at the Hungarian National Museum. J Anal At Spectrom 30(3):730–737

    CAS  Article  Google Scholar 

  50. 50.

    Rehren T, Belgya T, Jambon A, Káli G, Kasztovszky Z, Kis Z, Kovács I, Maróti B, Martinón-Torres M, Miniaci G, Pigott VC, Radivojević M, Rosta L, Szentmiklósi L, Szokefalvi-Nagy Z (2013) 5,000 years old Egyptian iron beads made from hammered meteoritic iron. J Archaeol Sci 40(12):4785–4792

    CAS  Article  Google Scholar 

  51. 51.

    Watkinson D, Rimmer M, Kasztovszky Z, Kis Z, Maróti B, Szentmiklósi L (2014) The use of neutron analysis techniques for detecting the concentration and distribution of chloride ions in archaeological iron. Archaeometry 56(5):841–859

    CAS  Article  Google Scholar 

  52. 52.

    Abraham E, Bessou M, Ziegle A, Herve MC, Szentmiklósi L, Kasztovszky Z, Kis Z, Menu M (2014) Terahertz, X-ray and neutron computed tomography of an Eighteenth Dynasty Egyptian sealed pottery. Appl Phys A 117(3):963–972

    CAS  Article  Google Scholar 

  53. 53.

    Prudêncio M, Dias M, Burbidge C, Kasztovszky Z, Marques R, Marques J, Cardoso G, Trindade M, Maróti B, Ruiz F, Esteves L, Matos M, Pais A (2016) PGAA, INAA and luminescence to trace the “history” of “The Panoramic View of Lisbon”: Lisbon before the earthquake of 1755 in painted tiles (Portugal). J Radioanal Nucl Chem 307:541–547

    Article  Google Scholar 

  54. 54.

    Bernardini F, De Min A, Lenaz D, Kasztovszky Z, Turk P, Velušček A, Szilágyi V, Tuniz C, Montagnari E (2014) Kokelj, mineralogical and chemical constraints on the provenance of Copper Age polished stone axes of ‘Ljubljana Type’ from Caput Adri. Archaeometry 56(2):175–202

    CAS  Article  Google Scholar 

  55. 55.

    Kasztovszky Zs, Kunicki-Goldfinger J (2011) Applicability of prompt gamma activation analysis to glass archaeometry. In: Proceedings of the 37th international symposium on archaeometry, Siena, Italy, 13–16 May 2008, p 83–90

  56. 56.

    Zöldföldi J, Richter S, Kasztovszky Zs, Mihály J (2006) Where does lapis lazuli come from? In: 34th International symposium on archaeometry, Zaragoza, 2004. Insttitución “Fernando el Católico” (C.S.I.C.) Excma. Diputación de Zaragoza, p 353–361

  57. 57.

    Marschall HR, Kasztovszky Z, Gméling K, Altherr R (2005) Chemical analysis of high-pressure metamorphic rocks by PGNAA: comparison with results from XRF and solution ICP-MS. J Radioanal Nucl Chem 265(2):339–348

    CAS  Article  Google Scholar 

  58. 58.

    Marschall HR, Altherr R, Ludwig T, Kalt A, Gméling K, Kasztovszky Z (2006) Partitioning and budget of Li, Be and B in high-pressure metamorphic rocks. Geochim Cosmochim Acta 70(18):4750–4769

    CAS  Article  Google Scholar 

  59. 59.

    Kodolányi J, Pettke T, Spandler C, Kamber BS, Gméling K (2012) Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones. J Petrol 53(2):235–270

    Article  Google Scholar 

  60. 60.

    NIST SRM 57b. https://www-s.nist.gov/srmors/view_detail.cfm?srm=57B. Accessed on 5 Jan 2016

Download references

Acknowledgments

We are thankful to the NMI3, C-ERIC, CHARISMA, IPERION, EFNUDAT, ERINDA and CHANDA access projects for financial support and our user community for inspiration and fruitful collaboration.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Szentmiklósi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Szentmiklósi, L., Kasztovszky, Z., Belgya, T. et al. Fifteen years of success: user access programs at the Budapest prompt-gamma activation analysis laboratory. J Radioanal Nucl Chem 309, 71–77 (2016). https://doi.org/10.1007/s10967-016-4774-9

Download citation

Keywords

  • Budapest Neutron Centre
  • Prompt-γ activation analysis
  • Transnational access