Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Data acquisition and analysis software for gamma coincidence spectrometry

  • 513 Accesses

  • 3 Citations


Coincidence counting in neutron activation analysis has well-known advantages, most importantly improvement of detection limits. One obstacle to the wider use of this technique is the complexity of the data acquisition and reduction systems that it requires. The usual approaches to multi-detector data acquisition incur significant dead-time, involve redundant work in repeatedly developing limited tools and risk potential errors in low-level code. The paper describes progress made in developing a software framework to address these shortcomings.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    Available on a public repository at github.com/usnistgov/qpx-gamma. For collaboration, please contact maintainer.


  1. 1.

    Vobecký M, Jakůbek J, Bustamante CG, Koníček J, Pluhař J, Pospíšil S, Rubáček L (1999) Multielement instrumental activation analysis based on gamma–gamma coincidence spectroscopy. Anal Chim Acta 386(1):181–189

  2. 2.

    Gardner RP, Mayo CW, El-Sayyed ES, Metwally WA, Zheng Y, Poezart M (2000) A feasibility study of a coincidence counting approach for PGNAA applications. Appl Radiat Isot 53(4–5):515–526

  3. 3.

    Metwally WA, Gardner RP, Mayo CW (2004) Elemental PGNAA analysis using gamma–gamma coincidence counting with the library least-squares approach. Nucl Instrum Methods Phys Res Sect B 213:394–399

  4. 4.

    Tomlin BE, Zeisler R, Lindstrom RM (2008) γγ-coincidence spectrometer for instrumental neutron-activation analysis. Nucl Instrum Methods Phys Res Sect A 589(2):243–249

  5. 5.

    Oshima M, Toh Y, Hatsukawa Y, Koizumi M, Kimura A, Haraga A, Ebihara M, Sushida K (2008) Multiple gamma-ray detection method and its application to nuclear chemistry. J Radioanal Nucl Chem 278(2):257–262

  6. 6.

    Toh Y, Oshima M, Kimura A, Koizumi M, Furutaka K, Hatsukawa Y, Goto J (2008) Reduction of Compton background from hydrogen in prompt gamma-ray analysis by multiple photon detection. J Radioanal Nucl Chem 278(3):685–689

  7. 7.

    Islam MEMA (2012) Characterization of multiple prompt gamma-ray analysis (MPGA) system at JAEA for elemental analysis of geological and cosmochemical samples. Appl Radiat Isot 70(8):1531–1535

  8. 8.

    Radford DC Radware software package. http://radware.phy.ornl.gov/

  9. 9.

    Lindstrom RM, Ammerlaan MJJ, Then SS (1996) Loss-free counting at IRI and NIST. J Trace Microprobe Tech 14(1):67–75

  10. 10.

    Burnett JL, Davies AV (2011) Development of a cosmic veto gamma-spectrometer. J Radioanal Nucl Chem 292(3):1007–1010

  11. 11.

    Matsumura H, Masumoto K, Toyoda A, Kinoshita N (2008) List-mode coincidence data analysis for highly selective and low background detection of gamma-nuclides in activated samples. J Radioanal Nucl Chem 278(3):733–738

Download references


This project was sponsored by the Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, USA. A note of gratitude for continued help and consultations to Richard M. Lindstrom and Rolf Zeisler at the National Institute of Standards and Technology, Gaithersburg, USA.


Certain commercial equipment, instruments, or materials are identified in this report in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

Author information

Correspondence to Martin Shetty.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shetty, M., Şahin, D. Data acquisition and analysis software for gamma coincidence spectrometry. J Radioanal Nucl Chem 309, 243–247 (2016). https://doi.org/10.1007/s10967-016-4762-0

Download citation


  • Gamma–gamma coincidence
  • Digital data acquisition
  • High throughput data acquisition
  • Multi-threaded architecture
  • Loss-free counting