Contamination of surface soils from a heavy industrial area in the North of Spain

  • Joana LageEmail author
  • Hubert Wolterbeek
  • Susana Marta Almeida


The objective of this study was to assess the soil contamination in the surroundings of a heavy industrial area located in Spain. k 0-INAA was used to measure the concentration of 21 elements in soils. The extent of the contamination was evaluated by calculation of the index of geoaccumulation, contamination factor and enrichment factor. A multivariate statistical analysis was used to identify source profiles. This work indicated that the surface soils are affected by airborne supply of elements from natural and anthropogenic sources. Results showed the existence of high levels of contamination for the elements Zn, Sb, As and Br.


Top soil Elements Metals Industry Gijón k0-INAA 



The authors gratefully acknowledge Fundação para a Ciência e Tecnologia (FCT) for funding J. Lage PhD grant (SFRH/BD/79084/2011) and S.M. Almeida contract (IF/01078/2013). C2TN/IST authors gratefully acknowledge the FCT support through the UID/Multi/04349/2013 project.


  1. 1.
    Glennon MM, Harris P, Ottesen RT, Scanlon RP, O’Connor PJ (2014) The Dublin SURGE Project: geochemical baseline for heavy metals in topsoils and spatial correlation with historical industry in Dublin, Ireland. Environ Geochem Health 36:235–254CrossRefGoogle Scholar
  2. 2.
    Science Communication Unit, University of the West of England, Bristol (2013) Science for environment policy in-depth report: soil contamination; impacts on human health. Report produced for the European Commission DG Environment. September 2013.
  3. 3.
    Imperato M, Adamo P, Naimo D, Arienzo M, Stanzione D, Violante P (2003) Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environ Pollut 124:247–256CrossRefGoogle Scholar
  4. 4.
    Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  5. 5.
    Tiller KG (1992) Urban soil contamination in Australia. Aust J Soil Res 30:937–957CrossRefGoogle Scholar
  6. 6.
    Manta DS, Angelone M, Bellanca A, Neri R, Sprovieri M (2002) Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Sci Total Environ 300:229–243CrossRefGoogle Scholar
  7. 7.
    Steinnes E, Friedland AJ (2006) Metal contamination of surface soils from long-range atmospheric transport: existing and missing knowledge. Environ Rev 14:169–186CrossRefGoogle Scholar
  8. 8.
    McIntyre T (2003) Phytoremediation of heavy metals from soils. Adv Biochem Eng Biotechnol 78:97–123Google Scholar
  9. 9.
    Yang X, Feng Y, He A, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18:339–353CrossRefGoogle Scholar
  10. 10.
    Panagos P, Liedekerke MV, Yigini Y, Montanarella L (2013) Contaminated sites in Europe: review of the current situation based on data collected through a european network. J Environ Public Health. Article ID 158764Google Scholar
  11. 11.
    Abrahams PW (2002) Soils: their implications to human health. Sci Total Environ 291:1–32CrossRefGoogle Scholar
  12. 12.
    European Commission (2012) The state of soil in Europe—a contribution of the JRC to the European Environment Agency’s State and Outlook Report—SOER 2010. Luxembourg: Publications Office of the European Union.
  13. 13.
    Ciaparra D, Aries E, Booth MJ, Anderson DR, Almeida SM, Harrad S (2009) Characterization of volatile organic compounds and polycyclic aromatic hydrocarbons in the ambient air of steelworks. Atmos Environ 43:2070–2079CrossRefGoogle Scholar
  14. 14.
    Almeida SM, Lage J, Freitas MC, Pedro AI, Ribeiro T, Silva AV, Canha N, Almeida-Silva M, Sitoe T, Dionisio I, Garcia S, Domingues G, Perim Faria J, González Fernández B, Ciaparra D, Th Wolterbeek H (2012) Integration of biomonitoring and instrumental techniques to assess the air quality in an industrial area located in the coastal of central Asturias, Spain. J Toxicol Environ Health A 75:1392–1403CrossRefGoogle Scholar
  15. 15.
    Almeida SM, Lage J, Fernández B, Garcia S, Reis MA, Chaves PC (2015) Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry. Sci Total Environ 521–522:411–420CrossRefGoogle Scholar
  16. 16.
    Lage J, Almeida SM, Reis MA, Chaves PC, Ribeiro T, Garcia S, Faria JP, Fernandez BG, Th Wolterbeek H (2014) Levels and spatial distribution of airborne chemical elements in a heavy industrial area located in the north of Spain. J Toxicol Environ Health A 77:856–866CrossRefGoogle Scholar
  17. 17.
    Lage J, Almeida SM, Pacheco M, Freitas MC, Garcia S, Fernández BG, Wolterbeek HT (2016) Biomonitoring of atmospheric elements in an industrial area located in the North of Spain. Environ Geochem Health (in press)Google Scholar
  18. 18.
    Bowen H, Gibbons D (1963) Radioactivation Analysis. Claedon, Oxford. Cheselet, R. (1979). Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth Planet Sci Lett 42:398–411Google Scholar
  19. 19.
    De Corte F (1987) The k 0-standardization method, a move to the optimisation of neutron activation analysis. Proefschrift, RijksuniversiteitGoogle Scholar
  20. 20.
    Freitas MC, Reis MA, Marques AP, Almeida SM, Farinha MM, Oliveira O, Ventura MG, Pacheco AMG, Barros LIC (2003) Monitoring of environmental contaminants: 10 years of application of k 0-I INAA. J Radioanal Nucl Chem 257:621–625CrossRefGoogle Scholar
  21. 21.
    Freitas MC, Almeida SM, Reis MA, Ventura MG (2004) Neutron activation analysis: still a reference method for air particulate matter. J Radioanal Nucl Chem 262:235–239CrossRefGoogle Scholar
  22. 22.
    Almeida SM, Freitas MC, Pio CA, Pinheiro MT, Felix P (2013) Fifteen years of nuclear techniques application to suspended particulate matter studies. J Radioanal Nucl Chem 297:347–356CrossRefGoogle Scholar
  23. 23.
    Galinha C, Freitas MC, Pacheco AMG (2010) Enrichment factors and transfer coefficients from soil to rye plants by INAA. J Radioanal Nucl Chem 286:583–589CrossRefGoogle Scholar
  24. 24.
    Dung HM, Freitas MC, Blaauw M, Almeida SM, Dionisio I, Canha NH (2010) Quality control and performance evaluation of k 0-based neutron activation analysis and the Portuguese research reactor. Nucl Instrum Methods Phys Res Sect A 622:392–398CrossRefGoogle Scholar
  25. 25.
    Almeida SM, Almeida-Silva M, Galinha C, Ramos CA, Lage J, Canha N, Silva AV, Bode P (2014) Assessment of the Portuguese k 0-INAA laboratory performance by evaluating internal quality control data. J Radioanal Nucl Chem 300:581–587CrossRefGoogle Scholar
  26. 26.
    Ribeiro T (2011) Mapeamento de elementos químicos em zona industrial através da utilização de biomonitores. Master thesis of Chemical Engeneering, Instituto Superior Técnico, Lisbon, PortugalGoogle Scholar
  27. 27.
    Müller G (1969) Index of geoaccumulation in sediments of the Rhine River. GeoJournal 2:108–118Google Scholar
  28. 28.
    Loska K, Wiechula D, Korns I (2003) Metal contamination of farming soils affected by industry. Environ Int 30:159–165CrossRefGoogle Scholar
  29. 29.
    Mason B (1952) Principles of geochemistry. Wiley, New York, pp 26–57Google Scholar
  30. 30.
    Hakanson L (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Resour Res 14:975–1001Google Scholar
  31. 31.
    Buat-Menard P, Chesselet R (1979) Variable influence of the atmospheric flux on the trace metal chemistry ofoceanic suspended matter. Earth Planet Sci Lett 42:398–411CrossRefGoogle Scholar
  32. 32.
    Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39:611–627CrossRefGoogle Scholar
  33. 33.
    Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut 114:313–324CrossRefGoogle Scholar
  34. 34.
    Gallego JLR, Ordóñez A, Loredo J (2002) Investigation of trace element sources from an industrialized area (Avilés, northern Spain) using multivariate statistical methods. Environ Int 27:589–596CrossRefGoogle Scholar
  35. 35.
    Lee CS, Li X, Shi W, Cheung SC, Thornton I (2006) Metal contamination in urban, suburban and country park soils of Hong Kong: a study based on GIS and multivariate statistics. Sci Total Environ 356:45–61CrossRefGoogle Scholar
  36. 36.
    Martinez J, Llamas JF, Miguel E, Rey J, Hidalgo MC (2007) Soil contamination from urban and industrial activity: example of the mining district of Linares (southern Spain). Environ Geol 54(4):669–677CrossRefGoogle Scholar
  37. 37.
    ORDEN 2770/2006, de 11 de agosto, de la Consejería de Medio Ambiente y Ordenación del Territorio, por la que se procede al establecimiento de niveles genéricos de referencia de metales pesados y otros elementos traza en suelos contaminados de la Comunidad de MadridGoogle Scholar
  38. 38.
    ORDEN MAH/153/2007, de 4 de mayo, por la que se aprueba el procedimiento de la presentación telemática de los informes preliminares de situación y de los informes de situación de acuerdo con lo establecido en el Real decreto 9/2005, de 14 de enero, por el que se establece la relación de las actividades potencialmente contaminantes del suelo y los criterios y estándares para la declaración de suelos contaminadosGoogle Scholar
  39. 39.
    Tsai J-H, Lin K-H, Chen C-Y, Ding J-Y, Choa C-G, Chiang H-L (2007) Chemical constituents in particulate emissions from integrated iron and steel facility. J Trace Elem Med Biol 147:111–119Google Scholar
  40. 40.
    Dall’Osto M, Booth MJ, Smith W, Fisher R, Harrison RM (2008) A study of the size distributions and the chemical characterization of airborne particles in the vicinity of a large integrated steelworks. Aerosol Sci Technol 42:981–991CrossRefGoogle Scholar
  41. 41.
    Hleis D, Fernandez-Olmo I, Ledoux F, Kfoury A, Courcot L, Desmonts T, Courcot D (2013) Chemical profile identification of fugitive and confined particle emissions from an integrated iron and steelmaking plant. J Hazard Mater 250–251:246–255CrossRefGoogle Scholar
  42. 42.
    Almeida SM, Freitas MC, Pio CA (2008) Neutron activation analysis for identification of african mineral dust transport. J Radioanal Nucl Chem 276:161–165CrossRefGoogle Scholar
  43. 43.
    Senesi GS, Baldassarre G, Senesi N, Radina B (1999) Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere 39:343–377CrossRefGoogle Scholar
  44. 44.
    Calvo AI, Alves C, Castro A, Pont V, Vicente AM, Fraile R (2013) Research on aerosol sources and chemical composition: past, current and emerging issues. Atmos Res 120–121:1–28CrossRefGoogle Scholar
  45. 45.
    Almeida SM, Freitas MC, Repolho C, Dionísio I, Dung HM, Caseiro A, Alves C, Pio CA, Pacheco AMG (2009) Characterizing air particulate matter composition and sources in Lisbon, Portugal. J Radioanal Nucl Chem 281:215–218CrossRefGoogle Scholar
  46. 46.
    Schofield MJ, Hodges J, Horne A, Anderson DA (2007) Characterization of fine and ultrafine particles from steelmaking processes. Presentation at ATS International Steelmaking Conference, Paris, December 13–14Google Scholar
  47. 47.
    Almeida SM, Silva AI, Freitas MC, Dzung HM, Caseiro A, Pio CA (2013) Impact of maritime air mass trajectories on the western European coast urban aerosol. J Toxicol Environ Health A 76(4–5):252–262CrossRefGoogle Scholar
  48. 48.
    Almeida SM, Lage J, Fernández B, Garcia S, Reis MA, Chaves PC (2015) Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry. Sci Total Environ 521–522:411–420CrossRefGoogle Scholar
  49. 49.
    Dall’Osto M, Booth MJ, Smith W, Fisher R, Harrison RM (2008) A study of the size distributions and the chemical characterization of airborne particles in the vicinity of a large integrated steelworks. Aerosol Sci Technol 42:981–991CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  • Joana Lage
    • 1
    • 2
    Email author
  • Hubert Wolterbeek
    • 2
  • Susana Marta Almeida
    • 1
  1. 1.C2TN, Instituto Superior TécnicoUniversidade de LisboaBobadela LRSPortugal
  2. 2.Faculty of Applied Sciences, Department of Radiation Science and TechnologyTechnical University of DelftDelftThe Netherlands

Personalised recommendations