Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 309, Issue 3, pp 1265–1269 | Cite as

Prompt gamma neutron activation analysis of large heterogeneous samples composed of concrete and polyethylene

  • Frank Mildenberger
  • Eric MauerhoferEmail author
Article

Abstract

The neutron moderating effect of concrete and polyethylene mixtures on the determination of the sample composition was investigated by irradiating 200 L steels drums with 14 MeV neutrons at the MEDINA (Multi Element Determination based on Instrumental Neutron Activation) facility. The elemental composition was evaluated using a quantification model validated for a concrete matrix in a previous work. The results obtained were found to agree with the expected values within ±34 % which is reasonable with regards to the samples heterogeneity.

Keywords

PGNAA Concrete Polyethylene Large samples Waste characterization 

References

  1. 1.
    Mauerhofer E, Havenith A (2014) The MEDINA facility for the assay of the chemotoxic inventory of radioactive waste packages. J Radioanal Nucl Chem. doi: 10.1007/s10967-014-3210-2 Google Scholar
  2. 2.
    Mauerhofer E, Havenith A, Kettler J (2015) Prompt gamma neutron activation analysis of a 200 L steel drum filled with concrete. J Radioannal Nucl ChemGoogle Scholar
  3. 3.
    Mildenberger F, Mauerhofer E (2015) Thermal neutron die-away times in large samples irradiated with a pulsed 14 MeV neutron source. J Radioanal Nucl Chem. doi: 10.1007/s10967-015-4178-2 Google Scholar
  4. 4.
    Molnár GL (2004) Handbook of prompt gamma activation analysis with neutron beams. Kluwer Academic Publishers, Berlin. ISBN ISBN 1-4020-1304-3Google Scholar
  5. 5.
    Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis, IAEA Library Cataloguing in Publication Data, ISBN 92-0-101306-X, Vienna January 2007Google Scholar
  6. 6.
    Mughabghab SF (2013) Thermal neutron capture cross sections, resonance integrals and G-factors. INDC(NDS)-440, IAEAGoogle Scholar
  7. 7.
    Berger MJ, Hubbell JH, Seltzer SM, Chang J, Coursey JS, Sukumar R, Zucker DS, Olsen K (2010) XCOM: Photon cross section database (version 1.5). National Institute of Standards and Technology, Gaithersburg, MDGoogle Scholar
  8. 8.
    Mauerhofer E, Kettler J International Patent Application WO 2012/010162 A1, Australian Patent AU201128018, Chinese Patent ZL201180035866.0, Japanese Patent 2013-519961Google Scholar
  9. 9.
    Nicol T, Carasco C, Perot B, Ma JL, Payan E, Mauerhofer M, Havenith A, Collot J (2015) Quantitative comparison between PGNAA measurements and MCNPX simulations. J Radioanal Nucl Chem. doi: 10.1007/s10967-015-4451-4 Google Scholar
  10. 10.
    Chadwick MB, Herman M, Oblozinsky P et al (2011) ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl Data Sheets 112(12):2887–2996CrossRefGoogle Scholar
  11. 11.
    Havenith A (2015) Stoffliche Charakterisierung radioaktiver Abfallprodukte durch ein Multi-Element-Analyseverfahren basierend auf der instrumentellen Neutronen-Aktivierungs-Analyse—MEDINA—Schriften des Forschungszentrum Jülich, Energie & Umwelt/Energy & Environment, Band/Volume 248, ISBN 978-3-95806-033-2Google Scholar
  12. 12.
    Estre N, Eck D, Pettier JL, Payan E, Roure C, Simon E (2015) High-energy X-ray Imaging applied to nondestructive characterization of large nuclear waste drums. IEEE Trans Nucl Sci. doi: 10.1109/TNS.2015.2498190 Google Scholar
  13. 13.
    Carasco C, Perot B, Mariani A, El Kanawati W, Valkovic V, Sudac D, Obhodas J (2010) Material characterization in cemented radioactive waste with the associated particle technique. Nucl Instrum Methods Phys Res A. doi: 10.1016/j.nima.2009.10.085 Google Scholar
  14. 14.
    Lehman E, Frei G, Nordlund A, Dahl B (2005) Fast neutron radiography with 14 MeV from a neutron generator. IEEE Trans Nucl Sci. doi: 10.1109/TNS.2005.843635 Google Scholar
  15. 15.
    Sowerby BD, Tickner JR (2007) Recent advances in fast neutron radiography for cargo inspection. Nucl Instrum Methods Phys Res A. doi: 10.1016/j.nima.2007.05.095 Google Scholar
  16. 16.
    Cooper RJ, Radford DC, Hausladen PA, Lagergren K (2011) A novel HPGe-detector for gamma-ray tracking and imaging. Nucl Instrum Methods Phys Res A. doi: 10.1016/j.nima.2011.10.008 Google Scholar
  17. 17.
    Yee RM, Shaw TJ, Gozani T (2009) Thermal neutron die-away studies in a 14 MeV neutron-based active interrogation system. IEEE Trans Nucl Sci. doi: 10.1109/TNS.2009.2017373 Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Institute of Energy and Climate ResearchNuclear Waste Management and Reactor SafetyJülichGermany

Personalised recommendations