Skip to main content
Log in

Characterization of pentavalent and hexavalent americium complexes in nitric acid using X-ray absorption fine structure spectroscopy and first-principles modeling

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The speciation of pentavalent and hexavalent americium (Am) complexes in nitric acid have been studied by X-ray absorption fine structure spectroscopy, UV–visible spectroscopy, and density functional theory. Calculated bond distances for the Am(VI) complex are in reasonable agreement with EXAFS data and suggest the presence of a mixture of AmO2 + and AmO2 2+ as well as a slightly higher kinetic stability for Am(VI) compared to Am(V).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Morimoto K, Kato M, Uno H, Hanari A, Tamura T, Sugata H, Sunaoshi T, Kono S (2005) Preparation and characterization of (Pu, U, Np, Am, simulated FP) O2–X. J Phys Chem Solids 66(2–4):634–638

    Article  CAS  Google Scholar 

  2. Yoshimochi H, Nemoto M, Mondoa K, Koyamaa S, Namekawa T (2004) Fabrication technology for MOX fuel containing AmO2 by an in-cell remote process. J Nucl Sci Technol 41:850–856

    Article  CAS  Google Scholar 

  3. Prieur D, Carvajal-Nunez U, Vitova T, Somers J (2013) Local and electronic structure of americium-bearing PuO2. Eur J Inorg Chem 9:1518–1524

    Article  Google Scholar 

  4. Suzuki C, Nishi T, Nakada M, Tsuru T, Akabori M, Hirata M, Kaji Y (2013) DFT study on the electronic structure and chemical state of americium in an (Am, U) mixed oxide. J Phys Chem Solids 74(12):1769–1774

    Article  CAS  Google Scholar 

  5. Denecke M (2006) Actinide speciation using X-ray absorption fine structure spectroscopy. Coord Chem Rev 250(7–8):730–754

    Article  CAS  Google Scholar 

  6. Martin L, Mincher B, Schmitt N (2007) Understanding the chemistry of uncommon americium oxidation states for application to actinide/lanthanide separations. Global, Boise

    Google Scholar 

  7. Mincher B, Martin L, Schmitt N (2008) Tributylphosphate extraction behavior of bismuthate-oxidized americium. Inorg Chem 47(15):6984–6989

    Article  CAS  Google Scholar 

  8. Mincher B, Schmitt N, Case M (2011) A TRUEX-based separation of americium from the lanthanides. Solvent Extr Ion Exch 29(2):247–259

    Article  CAS  Google Scholar 

  9. Martin L, Mincher B, Schmitt N (2009) Extraction of americium(VI) by a neutral phosphonate ligand. J Radioanal Nucl Chem 282(2):523–526

    Article  CAS  Google Scholar 

  10. Resslel T (1998) WinXAS: a program for X-ray absorption spectroscopy data analysisunder MS-windows. J Synchroton Radiat 5:118–122

    Article  Google Scholar 

  11. Ravel B, Newville M (2005) ATHENA and ARTEMIS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541

    Article  CAS  Google Scholar 

  12. Giandomenico MVD, Le Naour C, Simoni E, Guillaumont D, Moisy Ph, Hennig C, Conradson SD, Den Auwer C (2009) Structure of early actinides(V) in acidic solutions. Radiochim Acta 97:347–353

    Article  Google Scholar 

  13. Reich T, Geipel G, Funke H, Hennig C, Roßberg A, Bernhard G et al. (2001) XANES and EXAFS measurements of plutonium hydrates. Biannual report 1999/2000, Project-Group ESRF-Beamline (ROBL-CRG), FZR-322

  14. Runde WH, Mincher BJ (2011) Higher oxidation states of americium: preparation, characterization and use for separations. Chem Rev 111:5723–5741

    Article  CAS  Google Scholar 

  15. Riddle CL, Martin LR (2014) Initial report on the behavior of fission products in the co-decontamination process. In: U.S. Department of Energy Material Recovery and Waste Form Development, Idaho National Laboratory

  16. Hara M, Suzuki S (1977) Oxidation of americium(III) with sodium bismuthate. J Radioanal Nucl Chem 36:95–104

    Article  CAS  Google Scholar 

  17. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 91(1):508–517

    Article  Google Scholar 

  18. Delley B (2006) The conductor-like screening model for polymers and surfaces. Mol Simul 32(2):117–123

    Article  CAS  Google Scholar 

  19. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  20. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45(23):244–249

    Article  Google Scholar 

  21. Shamov GA, Schreckenbach G, Martin RL, Hay P (2008) Crown ether inclusion complexes of the early actinide elements, [AnO2(18-crown-6)]n+, An = U, Np, Pu and n = 1, 2: a relativistic density functional study. J Inorg Chem 47(5):1465–1475

    Article  CAS  Google Scholar 

  22. Hehre WJ, Radom L, Schleyer PR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  23. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  24. Weck PF, Kim E, Balakrishnan N, Poineau F, Yeamans CB, Czerwinski KR (2007) First-priciples study of single-crystal uranium mono- and dinitride. Chem Phys Lett 443:82–86

    Article  CAS  Google Scholar 

  25. Weck PF, Gong C-MS, Kim E, Thuery P, Czerwinski KR (2011) One-dimensional uranium-organic coordination polymers: crystal and electronic structures of uranyl-diacetohydroxamate. Dalton Trans 40:6007

    Article  CAS  Google Scholar 

  26. Weck PF, Kim E, Masci B, Thuery P, Czerwinski KR (2010) Density functional analysis of the trigonal uranyl equatorial coordination in hexahomotrioxacalix [3] arene-based macrocyclic complexes. Inorg Chem 49:1465

    Article  CAS  Google Scholar 

  27. Den Auwer C, Charbonnel MC, Drew MGB, Grigoriev M, Hudson MJ, Iveson PB, Madic C, Nierlich M, Presson MT, Revel R, Russell ML, Thuery P (2000) Crystallographic, X-ray absorption, and IR studies of solid- and solution-state structures of tris (nitrato) N, N, N’, N’-tetraethylmalonamide complexes of lanthanides. Comparison with the americium complex. Inorg Chem 39:1487–1495

    Article  Google Scholar 

  28. Hay PJ, Martin RL, Schreckenbach G (2000) Theoretical studies of the properties and solution chemistry of AnO2 2+ and AnO2 + aquo complexes for An = U, Np, and Pu. J Phys Chem A 104:6259–6270

    Article  CAS  Google Scholar 

  29. Conradson SD, Clark DL, Neu MP, Runde W, Tait CD (2000) Characterizing the plutonium aquo ions by XAFS spectroscopy. Challenges in plutonium science, LANL. Los Alamos 26:418–421

    CAS  Google Scholar 

  30. Denecke MA, Dardenne K, Marquardt CM (2005) Np(IV)/Np(V) valence determinations from Np L3 edge XANES/EXAFS. Talanta 65(4):1008–1014

    Article  CAS  Google Scholar 

  31. D’Angelo P, Martelli F, Spezia R, Filipponi A, Denecke MA (2013) Hydration properties and ionic radii of actinide(III) ions in aqueous solution. Inorg Chem 52:10318–10324

    Article  Google Scholar 

  32. Yaita T, Tachimori S, Edelstein NM, Bucher JJ, Rao L, Shuh DK, Allen PG (2001) EXAFS studies of americium (III)-benzimidazole complex in ethanol. J Synchrotron Radiat 8:663–665

    Article  CAS  Google Scholar 

  33. Bourges JY, Guillaume B, Koely G, Hobart DE, Peterson JR (1983) Coexistance of americium in four oxidaiton states in sodium-carbonate and sodium-bicarbonate medium. Inorg Chem 22:1179–1184

    Article  CAS  Google Scholar 

  34. Vallet V, Privalov T, Wahlgren U, Grenthe I (2004) The mechanism of water exchange in Am O2(H2O)52+ and in the isoelectronic UO2(H2O) +5  and NpO2(H2O) 2+5  complexes as studied by quantum chemical methods. J Am Chem Soc 126:7766–7767

    Article  CAS  Google Scholar 

  35. Tsushima S, Wahlgren U, Grenthe I (2006) Quantum chemical calculations of reduction potentials of AnO2 2+/AnO2 + (An = U, Np, Pu, Am) and Fe3 +/Fe2 + couples. J Phys Chem A 110:9175–9182

    Article  CAS  Google Scholar 

  36. Notter FP, Dubillard S, Bolvina H (2008) A theoretical study of the excited states of Am O n+2 , n = 1,2,3. J Chem Phys 128:164–315

    Article  Google Scholar 

  37. Pomogaev V, Tiwari SP, Rai N, Goff GS, Runde W, Schneider WF, Maginn EJ (2013) Development and application of effective pairwise potentials for UO n+2 , NpO n+2 , PuO n+2 , and Am O n+2 (n = 1, 2) ions with water. Phys Chem 15:15954

    CAS  Google Scholar 

  38. Manolopoulos DE, May JC, Down SE (1991) Theoretical studies of the fullerenes: C34 to C70. Chem Phys Lett 181(2):105–111

    Article  CAS  Google Scholar 

  39. Pearson RG (1973) Hard and soft acids and bases. Dowden, Hutchinson and Ross, Stroudsburg

    Google Scholar 

  40. Delley B (1995) In: Politzer P, Seminario JM (eds) Modern density functional theory: a tool for chemistry. Elsevier Science, Amsterdam

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from the faculty and staff of the Stanford Synchrotron Radiation Lightsource at Stanford University for their assistance with this work. This research was sponsored by the U.S. Department of Energy, Office of Nuclear Energy, Science and Technology under DOE Idaho Operations Office contract DE-AC07-99ID13727. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Riddle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riddle, C., Czerwinski, K., Kim, E. et al. Characterization of pentavalent and hexavalent americium complexes in nitric acid using X-ray absorption fine structure spectroscopy and first-principles modeling. J Radioanal Nucl Chem 309, 1087–1095 (2016). https://doi.org/10.1007/s10967-016-4704-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4704-x

Keywords

Navigation