Assessing urban air quality and its relation with radon (222Rn)

Abstract

This paper focuses on the assessment of air quality and its relation with radon (222Rn) for Bucharest metropolitan area in Romania. Specifically, daily mean concentrations of particle matter (PM2.5, PM10), ozone (O3), nitrogen dioxide (NO2), sulphur dioxide (SO2) and global air quality indices have been analyzed in relation with radon (222Rn) concentrations measured in the air near the ground with AlphaGUARD Radon Monitoring System and CR-39 SSNTDs during 2012 year. Such new information is required by atmospheric sciences to prove suitability of 222Rn as a tracer for atmospheric dynamics analysis as well as by epidemiological and radiological protection studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Laumbach RJ, Kipen HM (2012) Respiratory health effects of air pollution: update on biomass smoke and traffic pollution. J Allergy Clin Immunol 129(1):3–11

    CAS  Article  Google Scholar 

  2. 2.

    European Union emission inventory report 1990–2012 under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP) (2014) EEA technical report 12

  3. 3.

    Jacob DJ, Winner DA (2009) Effect of climate change on air quality. Atmos Environ 43:51–63

    CAS  Article  Google Scholar 

  4. 4.

    Desideri D, Roselli C, Meli MA, Feduzi L (2007) Comparison between the diurnal trends of ozone and radon gas concentrations measured at ground in the semi-rural site of Central Italy. J Radioanal Nucl Chem 273(2):345–351

    CAS  Article  Google Scholar 

  5. 5.

    Whittlestone S, Zahorowski W, Schery SD (1998) Radon flux variability with season and location in Tasmania, Australia. J. Radioanal Nucl Chem 236:213–217

    CAS  Article  Google Scholar 

  6. 6.

    Kümmel M, Dushe C, Müller S, Gehrcke K (2014) Outdoor 222Rn-concentrations in Germany e part 1—natural Background. J Environ Radioact 132:123–130

    Article  Google Scholar 

  7. 7.

    Canbazoglu C, Dogru M, Celebi N, Kopuz G (2012) Assessment of natural radioactivity in Elazıg˘ region, eastern Turkey. J Radioanal Nucl Chem 292:375–380. doi:10.1007/s10967-011-1485-0

    CAS  Article  Google Scholar 

  8. 8.

    Griffiths AD, Zahorowski W, Element A, Werczynski S (2010) A map of radon flux at the Australian land surface. Atmos Chem Phys 10:8969–8982

    CAS  Article  Google Scholar 

  9. 9.

    Pitari G, Coppari E, De Luca N, Di Carlo P (2014) Observations and box model analysis of radon-222 in the atmospheric surface layer at L’Aquila, Italy: March 2009 case study. Environ Earth Sci 71:2353–2359

    CAS  Article  Google Scholar 

  10. 10.

    Wang F, Zhang Z, Ancora MP, Deng X-D, Zhang H (2013) Radon natural radioactivity measurements for evaluation of primary pollutants. World J, Sci. doi:10.1155/2013/626989

    Google Scholar 

  11. 11.

    Zoran M, Savastru R, Savastru D (2012) Ground based radon (222Rn) observations in Bucharest, Romania and their application to geophysics. J Radioanal Nucl Chem 293(3):877–888

    CAS  Article  Google Scholar 

  12. 12.

    Chambers SD, Hong S-B, Williams AG, Crawford J, Griffiths AD, Park S-J (2014) Characterizing terrestrial influences on Antarctic air masses using radon-222 measurements at King George Island. Atmos Chem Phys 14:9903–9916

    CAS  Article  Google Scholar 

  13. 13.

    Chambers SD, Williams AG, Crawford J, Griffiths AD (2014) On the use of radon for quantifying the effects of atmospheric stability on urban emissions. Atmos Chem Phys Discuss 14:25411–25452

    Article  Google Scholar 

  14. 14.

    Porstendorfer J, Buterweck G, Reineking A (1991) Diurnal variation of the concentration of radon and its short-lived daughters in the atmosphere near the ground. Atmos Environ 25:709–713

    Article  Google Scholar 

  15. 15.

    Masiol M, Agostinelli C, Formenton G, Tarabotti E, Pavoni B (2014) Thirteen years of air pollution hourly monitoring in a large city: potential sources, trends, cycles and effects of car-free days. Sci Total Environ 494–495:84–96

    Article  Google Scholar 

  16. 16.

    Hyslop NP (2009) Impaired visibility: the air pollution people see. Atmos Environ 43:182–195

    CAS  Article  Google Scholar 

  17. 17.

    Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics—from air pollution to climate change, 2nd edn. Wiley, New York

    Google Scholar 

  18. 18.

    Finlayson-Pitts BJ, Pitts JN (2000) Chemistry of the upper and lower atmosphere: theory, experiments, and applications. Academic Press, San Diego

    Google Scholar 

  19. 19.

    Dulaiova H, Peterson R, Burnett WC, Lane-Smith D (2005) A multi-detector continuous monitor for assessment of 222Rn in the coastal ocean. J Radioanal Nucl Chem 263:361–365

    CAS  Article  Google Scholar 

  20. 20.

    Smetanova I, Holy K, Muellerova M, Polaskova A (2009) The effect of meteorological parameters on radon concentration in borehole air and water. J Radioanal Nucl Chem 283:101–109

    Article  Google Scholar 

  21. 21.

    Ashikawa N, Syojo N, Imamura H, Fujisaki M, Matsuoka N, Takashima Y (1998) The size distribution of 210Po in the atmosphere around Mt. Sakurajima in Kagoshima prefecture, Japan. J Radioanal Nucl Chem 230(1–2):9–104

    Google Scholar 

  22. 22.

    Zoran M, Dida MR, Savastru R, Savastru D, Dida A, Ionescu O (2014) Ground level ozone (O3) associated with radon (222Rn) and particulate matter (PM) concentrations in Bucharest metropolitan area and adverse health effects. J Radioanal Nucl Chem 300(2):729–746

    CAS  Article  Google Scholar 

  23. 23.

    Grice S, Stedman J, Kent A, Hobson M, Norris J, Abbott J et al (2009) Recent trends and projections of primary NO2 emissions in Europe. Atmos Environ 43(13):2154–2167

    CAS  Article  Google Scholar 

  24. 24.

    Kinney PL (2008) Climate change, air quality, and human health. Am J Prev Med 35(5):459–467

    Article  Google Scholar 

  25. 25.

    European Council Directive (2008) 2008/50/EC 21st May 2008 on ambient air quality and cleaner air for Europe. Off J Eur Union L152:1–44

    Google Scholar 

  26. 26.

    Schar C, Vidale PL, Luthl DC, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336

    Article  Google Scholar 

  27. 27.

    Avino P, Manigrasso M (2008) Ten-year measurements of gaseous pollutants in urban air by an open-path analyzer. Atmos Environ 42:4138–4148

    CAS  Article  Google Scholar 

  28. 28.

    Zoran M, Dida MR, Zoran AT, Zoran LF, Dida A (2012) Outdoor 222Radon concentrations monitoring in relation with particulate matter levels and possible health effects. J Radioanal Nucl Chem 296(3):1179–1192

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Romanian National Authority for Scientific Research, Program STAR Contract 73/2013 VRAFORECAST and Program PCCA Contract 86/2014 VRAGEO.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maria Zoran.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zoran, M., Savastru, D. & Dida, A. Assessing urban air quality and its relation with radon (222Rn). J Radioanal Nucl Chem 309, 909–922 (2016). https://doi.org/10.1007/s10967-015-4681-5

Download citation

Keywords

  • Radon (222Rn)
  • Particle matter PM2.5 and PM10
  • Ozone (O3)
  • Nitrogen dioxide (NO2)
  • Sulphur dioxide (SO2)
  • Global air quality index
  • Bucharest