Skip to main content
Log in

Development of a methodology for the determination of trace metallic constituents in presence of neptunium

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

An ICP-AES based methodology was developed for the determination of 22 trace metallic constituents (Ca, Co, Cr, Pb, Cu, Fe, Ga, In, Mg, Mn, Na, Ni, Sr, Zn, Eu, Sm, Gd, Dy, B, Be, Cd and Ag) in high purity neptunium matrix alongwith simultaneous determination of Np. Np 295.660 nm line was found to have the best analytical performance. The spectral interference of Np on other analytes have been investigated which includes identification of interference free line, evaluation of correction factor and tolerance level of neptunium. Presence of U, Th, Zr and Pu on the determination of Np has also been studied. The method was validated using synthetic samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Albright D, Barbour L (2009) Trouble tomorrow? Separated neptunium 237 and americium. In: David A, O’Neil K (eds) The challenges of fissile material control. Institute for Science and International Security, Washington, DC, pp 85–96

    Google Scholar 

  2. U.S. Department of Energy Office of Declassification, (2001) Restricted data declassification decisions 1946 to the present, RDD7

  3. Ojovan MI, Lee WE (2014) An introduction to nuclear waste immobilization, Elsevier Science Publishers, Amsterdam, ISBN 978-0-08-099392-8

  4. Eckhardt RC (2000) Yucca mountain looking ten thousand years into the future. Los Alamos Sci 26:466–489

    Google Scholar 

  5. Rodriguez C, Baxter A, McEachern D, Fikani M (2003) Deep-burn: making nuclear waste transmutation practical. Nucl Eng Des 222(2–3):299–317

    Article  CAS  Google Scholar 

  6. Ramebäck H, Skĺlberg M (1998) Separation of neptunium, plutonium, americium and curium from uranium with di-(2-ethylhexyl)-phosphoric acid (HDEHP) for radiometric and ICP-MS analysis. J Radioanal Nucl Chem 235:229–234

    Article  Google Scholar 

  7. Shukla JP, Pai SA, Subramanian MS (1980) Solvent extraction of neptunium(IV) from nitric acid solutions by sulphoxides and their mixtures. J Radioanal Nucl Chem 56:53–63

    Article  CAS  Google Scholar 

  8. Mitsugashira T, Suzuki S (1976) Cation exchange extraction of neptunium(V) and protactinium(V) from molten nitrate salt. J Radioanal Chem 34:309–317

    Article  CAS  Google Scholar 

  9. Michel H, Barci-Funel G, Dalmasso J, Ardisson J (1999) One step ion exchange process for the radiochemical separation of americium, plutonium and neptunium in sediments. J Radioanal Nucl Chem 240:467–470

    Article  CAS  Google Scholar 

  10. Pant DK, Chaugule GA, Gupta KK, Kulkarni PG, Gurba PB, Janardan P, Changrani RD, Dey PK, Pathak PN, Prabhu DR, Kanekar AS, Manchanda VK (2010) Neptunium estimation in the spent fuel dissolver solution by inductively coupled plasma-atomic emission spectroscopy. J Radioanal Nucl Chem 283:513–518

    Article  CAS  Google Scholar 

  11. Qiao J, Hou X, Roos P, Miró M (2010) Rapid and simultaneous determination of neptunium and plutonium isotopes in environmental samples y extraction chromatography using sequential injection analysis and ICP-MS. J Anal Atom Spectrom 25:1769–1779

    Article  CAS  Google Scholar 

  12. de las Heras LA, Hrnecek E, Bildstein O, Betti M (2002) Neptunium determination by dc glow discharge mass spectrometry (dc-GDMS) in Irish Sea sediment samples. J Anal At Spectrom 17:1011–1014

    Article  Google Scholar 

  13. Barrero Moreno JM, Betti M, Garcia Alonso JI (1997) Determination of neptunium and plutonium in the presence of highconcentrations of uranium by ion chromatography-inductively coupledplasma mass spectrometry. J Anal Atom Spectrom 12:355–361

    Article  CAS  Google Scholar 

  14. Sengupta A, Kulkarni MJ, Godbole SV (2011) Analytical application of DHOA for the determination of trace metallic constituents in U based fuel materials by ICP-AES. J Radioanal Nucl Chem 289:961–965

    Article  CAS  Google Scholar 

  15. Adya VC, Sengupta A, Thulasidas SK, Natarajan V (2015) Development of CCD based ICP-AES method for the direct determination of Phosphorous and Sulphur in U, Th and Zr matrices. J Radioanal Nucl Chem. doi:10.1007/s10967-015-4222-2

    Google Scholar 

  16. Sengupta A, Thulasidas SK, Natarajan V (2015) Trace level determination of precious metals in aqueous medium, U, Th and Zr based nuclear materials by ICP-AES and EDXRF—a comparative study. J Radioanal Nucl Chem 303:2421–2429

    CAS  Google Scholar 

  17. Satayanarayana K, Durani S (2010) Separation and inductively coupled plasma optical emission spectrometric (ICP-OES) determination of trace impurities in nuclear grade uranium oxide. J Radioanal Nucl Chem 286:669–685

    Google Scholar 

  18. Sengupta A, Adya VC, Godbole SV (2013) Spectral interference study of uranium on other analytes by using CCD based ICP-AES. J Radioanal Nucl Chem 298:1117–1125

    Article  CAS  Google Scholar 

  19. Airan Y, Sengupta A, Thulasidas SK, Natarajan V (2015) Studies on the spectral interference of gadolinium on different analytes by inductively coupled plasma atomic emission spectrometry. At Spectrosc 36(1):15–29

    CAS  Google Scholar 

  20. Sengupta A, Adya VC, Godbole SV (2012) Development of a methodology for the determination of americium and thorium by ICP-AES and their inter-element effect. J Radioanal Nucl Chem 292(3):1259–1264

    Article  CAS  Google Scholar 

  21. Airan Y, Sengupta A, Thulasidas SK, Natarajan V (2015) Studies on spectral interference of neodymium on analytes in trace metallic impurity analysis of neodymium matrix using CCD based icp-aes. At Spectrosc 36(1):30–41

    CAS  Google Scholar 

  22. Argekar AA, Kulkarni MJ, Mathur JN, Page AG (2002) Chemical separation and ICP–AES determination of 22 metallic elements in U and Pu matrices using cyanex-923 extractant and studies on stripping of U and Pu. Talanta 56:591–601

    Article  CAS  Google Scholar 

  23. Somayajulu PS, Sengupta A, Karande AK, Malav R, Das DK, Afzal Md (2015) Quality control of (Th, Pu)O2 fuel pellet obtained by coated agglomerate pelletization. J Radioanal Nucl Chem. doi:10.1007/s10967-015-4411-z

    Google Scholar 

  24. Sengupta A, Kulkarni MJ, Godbole SV, Natarajan V, Pathak PN (2014) Analytical application of DHOA for the determination of trace metallic constituents in Pu-based fuel materials by ICP-AES. At Spectrosc 35(2):60–64

    CAS  Google Scholar 

  25. Sengupta A, Adya VC, Kumar M, Thulasidas SK, Godbole SV, Manchanda VK (2011) ICP-AES determination of trace metallic elements in plutonium samples containing sizeable amounts of americium. At Spectrosc 32(2):49–55

    CAS  Google Scholar 

  26. Sengupta A, Thulasidas SK, Natarajan V (2014) Study on the spectral interference of thorium on critical elements and rare earths by CCD-based ICP-AES. At Spectrosc 35(5):213–222

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Dr. B.S.Tomar, Head, Radiochemistry Division, Dr. R.M.Kadam, Head, Actinide Spectroscopy Section, Radiochemistry Division for their constant support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sengupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adya, V.C., Sengupta, A., Jayabun Sk. et al. Development of a methodology for the determination of trace metallic constituents in presence of neptunium. J Radioanal Nucl Chem 308, 765–772 (2016). https://doi.org/10.1007/s10967-015-4636-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4636-x

Keywords

Navigation