Skip to main content
Log in

Retention of cesium from aqueous solutions using synthetic zeolites produced from power plant ash

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

New materials were synthesized from power plant ash, characterized by a variety of analytical techniques and studied as cesium sorbents from aqueous solutions. The Cs-determination was performed by γ-ray spectroscopy using 137Cs-labelled solutions under varying initial concentration, contact time, pH, presence of competing cations and temperature. The experimental sorption isotherms were modeled using the Langmuir and Freundlich equations and thermodynamic parameters (ΔG 0, ΔH 0, ΔS 0) were calculated from kinetics data obtained for 298, 308 and 323 K. The application of SEM/EDS, XRD, TGA and FTIR demonstrated the formation of stable zeolitic phases after the synthesis and support the proposed mechanism for the sorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eisenbud M, Gesell T (1997) Environmental radioactivity from natural, industrial and military sources, 4th edn. Academic Press, San Diego

    Google Scholar 

  2. Toxicological Profile for Cesium (2004) Agency for toxic substances and disease registry (ATSDR). U.S. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA

    Google Scholar 

  3. Kumamoto Y, Aoyama M, Hamajima Y, Murata A, Kawano T (2015) Impact of Fukushima-derived radiocesium in the western North Pacific Ocean about ten months after the Fukushima Dai-ichi nuclear power plant accident. J Environ Radioact 140:114–122

    Article  CAS  Google Scholar 

  4. Cornel RM (1993) Adsorption of cesium on minerals: a review. J Radioanal Nucl Chem 171:483–500

    Article  Google Scholar 

  5. Mabit L, Benmansour M, Walling DE (2008) Comparative advantages and limitations of the fallout radionuclides 137Cs, 210Pb and 7Be for assessing soil erosion and sedimentation, a review. J Environ Radioact 99:1799–1807

    Article  CAS  Google Scholar 

  6. Report No. 154, Cesium-137 in the Environment: Radioecology and Approaches to Assessment and Management Radiation Protection: A Memoir of the National Radiological Protection Board, IP Address: 155.207.64.236 (downloaded on 21/03/2014)

  7. Choppin GR, Khankhasayev MK (1999) Chemical separation technologies and related methods of nuclear waste management: applications problems and research needs. Kluwer, Dordrecht

    Book  Google Scholar 

  8. Borai EH, Harjula R, Malinen L, Paajanen A (2009) Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals. J Hazard Mater 172:416–422

    Article  CAS  Google Scholar 

  9. Vereshchagina TA, Vereshchagin SN, Shishkina NN, Vasilieva NG, Solovyov LA, Anshits AG (2013) Microsphere zeolite materials derived from coal fly ash cenospheres as precursors to mineral-like aluminosilicate hosts for 135,137Cs and 90Sr. J Nucl Mater 437:11–18

    Article  CAS  Google Scholar 

  10. Yildiz B, Erten HN, Kis M (2011) The sorption behavior of Cs ion on clay minerals and zeolite in radioactive waste management: sorption kinetics and thermodynamics. J Radioanal Nucl Chem 288:475–483

    Article  CAS  Google Scholar 

  11. Shahwan T, Erten HN (2002) Thermodynamic parameters of Cs+ sorption on natural clays. J Radioanal Nucl Chem 253:115–120

    Article  CAS  Google Scholar 

  12. Ahmaruzzaman A (2010) A review on the utilization of fly ash. Prog Energy Combust Sci 36:327–363

    Article  CAS  Google Scholar 

  13. Wang S, Wu H (2006) Environmental-benign utilisation of fly ash as low-cost adsorbents. J Hazard Mater B136:482–501

    Article  Google Scholar 

  14. Bhangare RC, Tiwari MP, Ajmal Y, Sahu SK, Pandit GG (2014) Distribution of natural radioactivity in coal and combustion residues of thermal power plants. J Radioanal Nucl Chem 300:17–22

    Article  CAS  Google Scholar 

  15. Sahu SK, Tiwari M, Bhangare RC, Pandit GG (2014) Enrichment and particle size dependence of polonium and other naturally occurring radionuclides in coal ash. J Environ Radioact 138:421–426

    Article  CAS  Google Scholar 

  16. Reijnders L (2005) Disposal, uses and treatments of combustion ashes: a review. Resour Conserv Recycl 43:313–336

    Article  Google Scholar 

  17. Gross M, Soulard M, Caullet P, Patarin J, Saude I (2007) Synthesis of Faujasite from coal fly ashes under smooth temperature and pressure conditions: a cost saving process. Microporous Mesoporous Mater 104:67–76

    Article  CAS  Google Scholar 

  18. Fan Y, Zhang FS, Zhu J, Liu Z (2008) Effective utilization of waste ash from MSW and coal co-combustion power plant-Zeolite synthesis. J Hazard Mater 153:382–388

    Article  CAS  Google Scholar 

  19. Breck DW (1974) Zeolite molecular sieves. Wiley, New York

    Google Scholar 

  20. Breck DW, Eversoler WG, Miltont M, Reed I, Tthomas L (1956) Crystalline zeolites. I. The properties of a new synthetic zeolite, type A. JCAS 78:5963–5972

    Article  CAS  Google Scholar 

  21. Buema G, Noli F, Misaelides P, Harja M, Sutiman DM, Cretescu I (2013) Uranium removal from aqueous solutions by raw and modified thermal power plant ash. J Radioanal Nucl Chem 299:381–386

    Article  Google Scholar 

  22. Noli F, Buema G, Misaelides P, Harja M (2015) New materials synthesized from ash under moderate conditions for removal of toxic and radioactive metals. J Radioanal Nucl Chem 303:2303–2311

    CAS  Google Scholar 

  23. El-Naggar MR, El-Kamash AM, Dessouky MI, Ghonaim AK (2008) Two step method for preparation of NaA-X zeolite blend from fly ash for removal of cesium ions. J Hazard Mater 154:963–972

    Article  CAS  Google Scholar 

  24. Faghihian H, Iravani M, Moayed M, Ghannadi-Maragheh M (2013) Preparation of a novel PAN-zeolite nanocomposite for removal of Cs and Sr from aqueous solutions: kinetic, equilibrium and thermodynamic studies. Chem Eng J 222:41–48

    Article  CAS  Google Scholar 

  25. Pena Penilla R, Guerrero Bustos A, Elizalde SG (2006) Immobilization of Cs, Cd, Pb and Cr by synthetic zeolites from Spanish low-calcium coal fly ash. Fuel 85:823–832

    Article  Google Scholar 

  26. El-Kamash AM (2008) Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations. J Hazard Mater 151:432–445

    Article  CAS  Google Scholar 

  27. Kapnisti M, Hatzidimitriou A, Noli F, Pavlidou E (2015) Investigation of Cesium uptake from aqueous solutions using new titanium phosphates ion-exchangers. J Radioanal Nucl Chem 303:2303–2311

    Google Scholar 

  28. Sheha RR, Metwally E (2007) Equilibrium isotherm modeling of cesium adsorption onto magnetic materials. J Hazard Mater 143:354–361

    Article  CAS  Google Scholar 

  29. Yavari R, Huang YD, Ahmadi SJ, Bagheri G (2010) Uptake behavior of titanium molybdophosphate for cesium and strontium. J Radioanal Nucl Chem 286:223–229

    Article  CAS  Google Scholar 

  30. EPA Test Method 1311–TCLP

  31. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  32. Freundlich HF (1906) Adsorption in solution. Phys Chem Soc 40:1361–1368

    Google Scholar 

  33. De Haro-Del Rio DA, Al-Joubori S, Kontogiannis O, Papadatos-Gigantes D, Ajayi O, Li C, Holmes CM (2015) The removal of caesium ions using supported clinoptilolite. J Hazard Mater 289:1–8

    Article  Google Scholar 

  34. Abdel Moamen OA, Ismail IM, Abdelmonem N, Rahman RA (2015) Factorial design analysis for optimizing the removal of cesium and strontium ions on synthetic nano-sized zeolite. J Taiwan Inst Chem Eng 55:133–144

    Article  CAS  Google Scholar 

  35. Wang TH, Li MH, Yeh WC, Wei YY, Teng SP (2008) Removal of cesium ions from aqueous solution by adsorption onto local Taiwan laterite. J Hazard Mater 160:638–642

    Article  CAS  Google Scholar 

  36. Fernandez-Jimenez A, Macphee DE, Lachowski EE, Palomo A (2005) Immobilization of cesium in alkaline activated fly ash matrix. J Nucl Mater 346:185–193

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support of Mrs G. Buema by the POSDRU CUANTUMDOC “Doctoral studies for European performances in research and innovation” project ID79407 funded by the European Social Fund and the Romanian Government is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fotini Noli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noli, F., Buema, G., Misaelides, P. et al. Retention of cesium from aqueous solutions using synthetic zeolites produced from power plant ash. J Radioanal Nucl Chem 309, 589–596 (2016). https://doi.org/10.1007/s10967-015-4611-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4611-6

Keywords

Navigation