Skip to main content
Log in

Study of Chelyabinsk LL5 meteorite fragments with different lithology using Mössbauer spectroscopy with a high velocity resolution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Study of four Chelyabinsk LL5 ordinary chondrite fragments with different lithology was carried out using optical and scanning electron microscopy, X-ray diffraction and 57Fe Mössbauer spectroscopy with a high velocity resolution at 295 K. Components revealed from the Mössbauer spectra were related to the main iron-bearing crystals of minerals such as olivine, pyroxene, troilite, kamacite, taenite and chromite. However, the relative amount of these minerals appeared to be different in the studied fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dodd RT (1981) Meteorites: a petrological-chemical synthesis. Cambridge University Press, Cambridge

    Google Scholar 

  2. Jarosewich E (1990) Chemical analyses of meteorites: a compilation of stony and iron meteorite analyses. Meteoritics 25:323–337

    Article  CAS  Google Scholar 

  3. Kohout T, Gritsevich M, Grokhovsky VI, Yakovlev GA, Haloda J, Halodova P, Michallik RM, Penttilä A, Muinonen K (2014) Mineralogy, reflectance spectra, and physical properties of the Chelyabinsk LL5 chondrite—Insight into shock-induced changes in asteroid regoliths. Icarus 228:78–85

    Article  Google Scholar 

  4. Oshtrakh MI, Semionkin VA (2013) Mössbauer spectroscopy with a high velocity resolution: advances in biomedical, pharmaceutical, cosmochemical and nanotechnological research. Spectrochim acta Part A: molec and biomolec spectroscopy 100:78–87

  5. Oshtrakh MI, Petrova EV, Grokhovsky VI, Semionkin VA (2008) A study of ordinary chondrites by Mössbauer spectroscopy with high-velocity resolution. Meteor Planet Sci 43:941–958

    Article  CAS  Google Scholar 

  6. Grokhovsky VI, Oshtrakh MI, Petrova EV, Larionov MYu, Uymina KA, Semionkin VA (2009) Mössbauer spectroscopy with high velocity resolution in the study of iron-bearing minerals in meteorites. Eur J Mineral 21:51–63

    Article  CAS  Google Scholar 

  7. Oshtrakh MI, Grokhovsky VI, Petrova EV, Larionov MYu, Goryunov MV, Semionkin VA (2013) Mössbauer spectroscopy with a high velocity resolution applied for the study of meteoritic iron-bearing minerals. J Mol Struct 1044:268–278

    Article  CAS  Google Scholar 

  8. Forder SD, Bland PA, Galazka-Friedman J, Urbanski M, Gontarz Z, Milczarek M, Bakun-Czubarow N (2002) A Mössbauer study of meteorites—a possible criterion to identify meteorites from the same parent body? Hyperfine Interact C5:405–408

    Article  Google Scholar 

  9. Verma HC, Rawat A, Paliwal BS, Tripathi RP (2002) Mössbauer Spectroscopic Studies of an Oxidized Ordinary Chondrite Fallen at Itawa-Bhopji, India. Hyperfine Interact 142:643–652

    Article  CAS  Google Scholar 

  10. Verma HC, Jee K, Tripathi RP (2003) Systematics of Mössbauer absorption areas in ordinary chondrites and applications to newly fallen meteorite in Jodhpur, India. Meteori. Planet Sci 38:963–967

    Article  CAS  Google Scholar 

  11. Cadogan JM, Devlin EJ (2012) Mössbauer study of the ordinary-chondrite meteorite Thylacine Hole-001. Hyperfine Interact 208:91–94

    Article  CAS  Google Scholar 

  12. Sitek J, Dekan J, Degmová J, Sedlačková K (2012) Phase analysis of Košice meteorite: preliminary results. In: Tuček J, Machala L (eds.). Mössbauer spectroscopy in materials science 2012, Proceedings of the international conference, AIP Conference Proceedings, Melville, New York, vol 1489, pp 115–122

  13. Cadogan JM, Rebbouh L, Mills JVJ, Bland PA (2013) An 57Fe Mössbauer study of three Australian L5 ordinary-chondrite meteorites: dating Kinclaven–001. Hyperfine Interact 222(Suppl. 2):S91–S98

    Article  Google Scholar 

  14. Gałazka-Friedman J, Szlachta K, Karwowski Ł, Woźniak M (2014) Mössbauer studies of Soltmany and Shisr 176 meteorites–comparison with other ordinary chondrites. Hyperfine Interact 226:593–600

    Article  Google Scholar 

  15. Lipka J, Sitek J, Dekan J, Sedlačková K (2014) Analyses of Rumanová meteorite. Hyperfine Interact 226:565–569

    Article  CAS  Google Scholar 

  16. Morozov M, Brinkmann C, Grodzicki M, Lottermoser W, Tippelt G, Amthauer G, Kroll H (2005) Octahedral cation partitioning in Mg, Fe2+-olivine. Mössbauer spectroscopic study of synthetic (Mg0.5Fe2+ 0.5)2SiO (Fa50). Hyperfine Interact 166:573–578

    Article  CAS  Google Scholar 

  17. Pasternak MP, Taylor RD, Jeanloz R, Bohlen SR (1992) Magnetic ordering transition in Mg0.9Fe0.lSiO3 orthopyroxene. Am Mineral 77:901–903

    CAS  Google Scholar 

  18. Petrova EV, Oshtrakh MI, Grokhovsky VI (2008) Hyperfine interactions in metal extracted from ordinary chondrite Tsarev L5: a study using Mössbauer spectroscopy with high velocity resolution. J Phys Chem Solids 69:1790–1795

    Article  CAS  Google Scholar 

  19. Oshtrakh MI, Petrova EV, Grokhovsky VI, Semionkin VA (2007) Determination of quadrupole splitting for 57Fe in M1 and M2 sites of both olivine and pyroxene in ordinary chondrites using Mössbauer spectroscopy with high velocity resolution. Hyperfine Interact 177:65–71

    Article  CAS  Google Scholar 

  20. Zhiganova EV, Grokhovsky VI, Oshtrakh MI (2007) Study of ordinary chondrites by Mössbauer spectroscopy with high velocity resolution: identification of M1 and M2 sites in silicate phases. Phys Stat Sol 204:1185–1191

    Article  CAS  Google Scholar 

  21. Maksimova AA, Oshtrakh MI, Klencsár Z, Petrova EV, Grokhovsky VI, Kuzmann E, Homonnay Z, Semionkin VA (2014) A comparative study of troilite in bulk ordinary chondrites Farmington L5, Tsarev L5 and Chelyabinsk LL5 using Mössbauer spectroscopy with a high velocity resolution. J Mol Struct 1073:196–201

    Article  CAS  Google Scholar 

  22. Oshtrakh MI, Semionkin VA, Milder OB, Novikov EG (2009) Mössbauer spectroscopy with high velocity resolution: an increase of analytical possibilities in biomedical research. J Radioanal Nucl Chem 281:63–67

    Article  CAS  Google Scholar 

  23. Semionkin VA, Oshtrakh MI, Milder OB, Novikov EG (2010) A high velocity resolution Mössbauer spectrometric system for biomedical research. Bull Rus Acad Sci: Phys 74:416–420

    Google Scholar 

  24. Klencsár Z, Kuzmann E, Vértes A (1996) User-friendly software for Mössbauer spectrum analysis. J Radioanal Nucl Chem 210:105–118

    Article  Google Scholar 

  25. Grandjean F, Long GJ, Hautot D, Whitney DL (1998) A Mössbauer spectral study of the Jilin meteorite. Hyperfine Interact 116:105–115

    Article  CAS  Google Scholar 

  26. Satuła D, Szymański K, Dobrzyński L, Tran VH, Troc R (2008) Mössbauer data analysis based on invariants and application to UFe5Sn. Phys Rev B 78:014411

    Article  Google Scholar 

  27. Szymański K, Satuła D, Dobrzyński L, Rećko K, Olszewski W, Brzózka K, Jankowska-Kisielińska J (2010) The method of invariants in 57Fe Mössbauer spectroscopy on selected examples. J Phys: Conf Ser 217:012010

    Google Scholar 

  28. Kruse O, Ericsson T (1988) A Mössbauer investigation of natural troilite from the Apalilik meteorite. Phys Chem Mineral 15:509–513

    Article  CAS  Google Scholar 

  29. Quintiliani M, Andreozzi GB, Skogby H (2011) Synthesis and Mössbauer characterization of Fe1+xCr2–xO4 (0 ≤ x ≤ 2/3) spinel single crystals. Period Mineral 80:39–55

    Google Scholar 

  30. Menzies ON, Bland PA, Berry FJ, Cressey G (2005) A Mössbauer spectroscopy and X-ray diffraction study of ordinary chondrites: quantification of modal mineralogy and implications for redox conditions during metamorphism. Meteorit Planet Sci 40:1023–1042

    Article  CAS  Google Scholar 

  31. Dowty E, Lindsley DH (1973) Mossbauer spectra of synthetic hedenbergite–ferrosilite pyroxenes. Am Mineral 58:850–868

    CAS  Google Scholar 

  32. Galimov EM, Kolotov VP, Nazarov MA, Kostitsyn YuA, Kubrakova IV, Kononkova NN, Roshchina IA, Alexeev VA, Kashkarov LL, Badyukov DD, Sevast’yanov VS (2013) Analytical Results for the material of the Chelyabinsk meteorite. Geochem Int 51:522–539

    Article  CAS  Google Scholar 

  33. Vincze I, Campbell IA, Meyer AJ (1974) Hyperfine field and magnetic moments in b.c.c. Fe–Co and Fe–Ni. Solid State Commun 15:1495–1499

    Article  CAS  Google Scholar 

  34. Goryunov MV, Oshtrakh MI, Chukin AV, Grokhovsky VI, Semionkin VA (2016) Comparative study of Aliskerovo, Anyujskij, Sikhote-Alin and Sterlitamak iron meteorites using Mössbauer spectroscopy. Hyperfine Interact. Accepted for Publication

Download references

Acknowledgments

The authors wish to thank Dr. A. V. Chukin for XRD measurement and G. A. Yakovlev for SEM with EDS analysis (Ural Federal University, Ekaterinburg). This work was supported in part by the Ministry of Education and Science of Russian Federation (basic financing for the Project # 2085), Act 211 Government of the Russian Federation, Contract No. 02.A03.21.0006 for the “Consortium Extra Terra”, the Russian Foundation for Basic Research (Grant No 15-35-21164) and the Hungarian National Scientific Fund (OTKA K115784 and K115913). This work was carried out within the Agreement of Cooperation between the Ural Federal University (Ekaterinburg) and the Eötvös Loránd University (Budapest).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Oshtrakh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oshtrakh, M.I., Maksimova, A.A., Klencsár, Z. et al. Study of Chelyabinsk LL5 meteorite fragments with different lithology using Mössbauer spectroscopy with a high velocity resolution. J Radioanal Nucl Chem 308, 1103–1111 (2016). https://doi.org/10.1007/s10967-015-4605-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4605-4

Keywords

Navigation