Skip to main content
Log in

Thermodynamic analysis of radionuclides behaviour in products of vapour phase hydrothermal oxidation of radioactive graphite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The behaviour of radionuclides was studied by the method of thermodynamic modelling in the wide temperature range 400–3200 K during interaction of radioactive graphite with water vapour, taken in the ratio C (s):H2O (g) = 1:10 and 1:20 (by mass). It was determined that the main components of the gaseous phase over the whole temperature range are H2O vapour, H2, gaseous CO and CO2 containing radioactive 14C. Their partial pressures exceed 103 Pa. Cs, Sr, Ca, Be, Ni radionuclides, which radioactive graphite contains, form volatile hydroxides, U, Pu radionuclides—volatile oxides. The partial pressure of these radionuclides does not exceed 10−1 Pa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Power Generation. http://www.rosatom.ru/aboutcorporation/activity/energy_complex/electricitygeneration. Accessed 05 May 2014

  2. Vorob’yev AV, Antonova AM (2013) Improvement of efficiency of installation with water-cooled graphite-moderated reactor at fractional loads. Bull Tomsk Polytech Univ 322(2):182–186

    Google Scholar 

  3. 22 Years of Chernobyl Disaster. http://pripyat.com/articles/22-goda-chernobylskoi-katastrofe-memuary-uchastnika-i-mnenie-eksperta-chast-1.html. Accessed 05 May 2014

  4. International Atomic Energy Agency (2006) Characterization, treatment and conditioning of radioactive graphite from decommissioning of nuclear reactors. IAEA-TECDOC-1521, IAEA, Vienna

  5. Barbin NM, Terentiev DI, Alexeev SG, Peshkov AV (2012) Special features of reprocessing of radioactive graphite by incineration method. In: Proceedings of International Congress ‘‘Fundamental principles of technogenic waste treatment and management technology’’. Yekaterinburg

  6. Yang H-C, Eun H-C, Lee D-G (2005) Behavior of radioactive elements during thermal treatment of nuclear graphite waste. Thermodynamic model analysis. J Nucl Sci Technol 42(10):869–876

    Article  CAS  Google Scholar 

  7. Barbin NM, Terentiev DI, Alexeev SG, Barbina TM (2014) Thermodynamic analysis of radioactive graphite reprocessing by incineration in air and oxidation in molten salt. J Raioanal Nucl Chem. 299:1747–1757

    Article  CAS  Google Scholar 

  8. Guéneau C, Chatillon C, Sundman B (2008) Thermodynamic modelling of the plutonium–oxygen system. J Nucl Mater 378:257–272

    Article  Google Scholar 

  9. Guéneau C, Dupin N, Sundman B, Martial C, Dumas J-C, Gossé S, Chatain S, De Bruycker F, Manara D, Konings RJM (2011) Thermodynamic modelling of advanced oxide and carbide nuclear fuels: description of the U–Pu–O–C systems. J Nucl Mater 419:145–167

    Article  Google Scholar 

  10. Ho TC, Kuo TH, Hopper JR (2000) Thermodynamic study of the behavior of uranium and plutonium during thermal treatment under reducing and oxidizing modes. Waste Manag 20:355–361

    Article  CAS  Google Scholar 

  11. Engel’sht VS, Balan RK (2011) Chemical thermodynamics of the vapor-oxygen gasification of graphite. High Temp 49(5):736–743

    Article  Google Scholar 

  12. Barbin NM, Terentiev DI, Alekseyev SG, Tuktarov MA, Romenkov AA (2009) Modeling of radioactive graphite oxidation in molten salts. In: The 33rd international symposium ‘‘Scientific basis for nuclear waste management’’. Book of abstracts, St. Petersburg

  13. Barbin NM, Terentiev DI, Alekseyev SG, Tuktarov MA, Romenkov AA (2009) Modeling of radioactive graphite oxidation in molten salts: computer experiment. Mater Res Soc Symp Proc 1193:359–366

    Article  Google Scholar 

  14. Vatolin NA, Moiseev GK, Trusov BG (1994) Thermodynamic modelling in high-temperature systems. Metallurgiya, Moscow

    Google Scholar 

  15. Moiseev GK, Vyatkin GP, Barbin NM (2002) Use of thermodynamic modelling for the studies of interactions involving ionic melts. South Ural State University, Chelyabinsk

    Google Scholar 

  16. Moiseev G, Kazantzev G, Barbin N, Marshuk L, Vatolin N (1998) Thermodynamic and experimental study of complex waste products treatment in the alkaline carbonates melt. J Min Metall 34(3B):177–194

    CAS  Google Scholar 

  17. Barbin NM, Terentiev DI, Alekseyev SG, Barbina TM (2013) Thermodynamic modeling of the Pb + Bi melt evaporation under various pressure and temperatures. Comput Mater Sci 66:28–33

    Article  CAS  Google Scholar 

  18. Barbin N, Terentiev D, Alekseyev S (2011) Computer calculation for thermal behavior of Na2CO3–Li2CO3 melt. J Eng Thermophys 20(3):308–314

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Barbin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbin, N.M., Terentiev, D.I., Alexeev, S.G. et al. Thermodynamic analysis of radionuclides behaviour in products of vapour phase hydrothermal oxidation of radioactive graphite. J Radioanal Nucl Chem 307, 1459–1470 (2016). https://doi.org/10.1007/s10967-015-4587-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4587-2

Keywords

Navigation