Skip to main content
Log in

Comparison of neutron doses measured by CR-39 via LET spectrometry and neutron rem meter

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Neutron dose for proton induced reactions on the combination of 7Li and 181Ta target was measured using CR-39 detector and a neutron rem meter, at five different proton energies (8–24 MeV). In case of CR-39, the dose equivalent (H LET) was measured via linear energy transfer (LET) spectrometry method using the major, minor radii of each track and thickness of removed surface, whereas the rem meter provided the direct reading of ambient dose equivalent [H*(10)]. Both these quantities per incident proton were found to increase with the proton energy. The response ratio of H LET to [H*(10)] was found to be in the range of 0.15–0.3 with an average 0.20 ± 0.09.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sarkar PK (2010) Radiat Meas 45:1476–1483. doi:10.1016/j.radmeas.2010.07.001

    Article  CAS  Google Scholar 

  2. Blann M (1975) Annu Rev Nucl Sci 25:123–166. doi:10.1146/annurev.ns.25.120175.001011

    Article  CAS  Google Scholar 

  3. Bodansky D (1962) Annu Rev Nucl Sci 12:79–122. doi:10.1146/annurev.ns.12.120162.000455

    Article  CAS  Google Scholar 

  4. Alexander JM, Fleury A (1974) Annu Rev Nucl Sci 24:279–340. doi:10.1146/annurev.ns.24.120174.001431

    Article  Google Scholar 

  5. Brooks FD, Klein H (2000) Nucl Instrum Methods Phys Res A 476:1–11. doi:10.1016/S0168-9002(01)01378-X

    Article  Google Scholar 

  6. Wedholm Medical AB (2005) Service manual for neutron monitor 2222 A. Wedholm Medical AB, Nyköping

    Google Scholar 

  7. Sunil C, Shanbhag AA, Nandy M, Tripathy SP, Sahoo GS, Joshi DS, Kale RM, Sarkar PK, Sharma DN (2012) Radiat Meas 47:1035–1043. doi:10.1016/j.radmeas.2012.08.004

    Article  CAS  Google Scholar 

  8. Sahoo GS, Tripathy SP, Shanbhag AA, Sunil C, Joshi DS, Sarkar PK (2012) Indian J Pure Appl Phys 50:513–516

    CAS  Google Scholar 

  9. Shanbhag AA, Tripathy SP, Sahoo GS, Sunil C, Nandy M, Sarkar PK (2012) Indian J Pure Appl Phys 50:531–533

    CAS  Google Scholar 

  10. Agosteo S, Silari M, Ulrici L (2009) Radiat Prot Dosim 137:51–73. doi:10.1093/rpd/ncp186

    Article  CAS  Google Scholar 

  11. Boukerdja L, Seghour A, Dendene O, Ali A, Slamene H (2014) J Radioanal Nucl Chem 302:1159–1165. doi:10.1007/s10967-014-3354-0

    Article  CAS  Google Scholar 

  12. Spurny F, Bednar J, Johansson L, Satherberg A (1996) Radiat Meas 26:645–649. doi:10.1016/S1350-4487(97)82877-6

    Article  CAS  Google Scholar 

  13. Heinrich W, Benton EV, Wiegel B, Rusch G, Becker E (1994) Adv Space Res 14:969–977. doi:10.1016/0273-1177(94)90563-0

    Article  CAS  Google Scholar 

  14. Zhou D, O’Sullivan D, Semones E, Heinrich W (2006) Adv Space Res 37:1764–1769. doi:10.1016/j.asr.2004.08.009

    Article  CAS  Google Scholar 

  15. Spurný F, Bamblevski VP (1999) Radiat Meas 31:413–418. doi:10.1016/S1350-4487(99)00124-9

    Article  Google Scholar 

  16. Brabcova K, Spurny F, Jadrnickova I (2009) Radiat Meas 44:969–971. doi:10.1016/j.radmeas.2009.10.089

    Article  CAS  Google Scholar 

  17. Sahoo GS, Tripathy SP, Sunil C, Sarkar PK (2013) Nucl Instrum Methods Phys Res A 708:46–50. doi:10.1016/j.nima.2013.01.007

    Article  CAS  Google Scholar 

  18. Sahoo GS, Tripathy SP, Paul S, Sharma SD, Joshi DS, Bandyopadhyay T (2014) J Radioanal Nucl Chem 302:1289–1293. doi:10.1007/s10967-014-3529-8

    Article  CAS  Google Scholar 

  19. Sahoo GS, Tripathy SP, Paul S, Sharma SD, Sharma SC, Joshi DS, Bandyopadhyay T (2014) J Med Phys 39:225–230. doi:10.4103/0971-6203.144487

    Article  CAS  Google Scholar 

  20. ICRP (1996) Conversion coefficients for use in radiological protection against external radiation. ICRP Publication 74. Ann ICRP 26(3–4)

  21. Charvat J, Spurny F (1988) Int J Radiat Appl Instrum D 14:447–449. doi:10.1016/1359-0189(88)90003-9

    CAS  Google Scholar 

  22. Spurny F, Molokanov AG, Bamblevski VP (2004) Radiat Prot Dosim 110:675–679. doi:10.1093/rpd/nch148

    Article  CAS  Google Scholar 

  23. Ghergherehchi M, Afarideh H, Kim YS, Park SY, Lee SB, Shin DH, Chai JS, Mu XJ, Lee BN (2012) Radiat Meas 47:410–416. doi:10.1016/j.radmeas.2012.03.008

    Article  CAS  Google Scholar 

  24. ICRP (1991) 1990 recommendations of the international commission on radiological protection. ICRP Publication 60. Ann ICRP 21(1–3)

Download references

Acknowledgments

The authors are thankful to all the staff members of BARC-TIFR pelletron accelerator facility for their support during the irradiation of detectors. Authors sincerely acknowledge the technical cooperation received from Ramjilal, N. G. Ninawe, A. Mahadakar, S. B. Salvi, P. C. Bolar, P. V. Gaudekar, H. Sparrow and M. Ekambram. Continuous encouragement and support from Dr. R. M. Tripathi, Head, HPD, BARC and Dr. K. S. Pradeepkumar, Associate Director, HS and E Group, BARC are highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Sahoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, G.S., Tripathy, S.P., Paul, S. et al. Comparison of neutron doses measured by CR-39 via LET spectrometry and neutron rem meter. J Radioanal Nucl Chem 308, 351–355 (2016). https://doi.org/10.1007/s10967-015-4583-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4583-6

Keywords

Navigation