Skip to main content
Log in

Gamma irradiation stability studies of coir pith: a lignocellulosic biosorbent for strontium

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The effects of gamma irradiation on a lignocellulosic biosorbent—coir pith were studied in view of its utilization for separation of metal ions of nuclear importance. The biosorbent was irradiated up to a dosage of 3.6 MGy using a 60Co source. Physicochemical changes induced by γ irradiation in coir pith, were investigated using fourier transform infrared spectroscopy, thermogravimetric and differential thermal analysis. Irradiation in air had negligible effect on the chemical structure of coir pith. However, irradiation in aqueous medium partially altered the chemical linkages in coir pith; which reflected in marginal decrease in its sorption capacity for strontium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026

    Article  CAS  Google Scholar 

  2. Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33:2469–2479

    Article  CAS  Google Scholar 

  3. Das N (2012) Remediation of radionuclide pollutants through biosorption—an overview. Clean 40:16–23

    CAS  Google Scholar 

  4. Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: a review. J Hazard Mater 157:220–229

    Article  CAS  Google Scholar 

  5. Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28

    Article  CAS  Google Scholar 

  6. Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316

    Article  CAS  Google Scholar 

  7. Parab H, Joshi S, Shenoy N, Lali A, Sarma US, Sudersanan M (2006) Determination of kinetic and equilibrium parameters of the batch adsorption of Co(II), Cr(III) and Ni(II) onto coir pith. Process Biochem 41:609–615

    Article  CAS  Google Scholar 

  8. Parab H, Joshi S, Shenoy N, Verma R, Lali A, Sudersanan M (2005) Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies. Bioresour Technol 96:1241–1248

    Article  CAS  Google Scholar 

  9. Parab H, Sudersanan M (2010) Engineering a lignocellulosic biosorbent—coir pith for removal of cesium from aqueous solutions: equilibrium and kinetic studies. Water Res 44:854–860

    Article  CAS  Google Scholar 

  10. Parab H, Shenoy N, Kumar SA, Kumar SD, Reddy AVR (2013) Removal of strontium from aqueous solutions using coir pith as biosorbent : kinetic and equilibrium studies. Int J Curr Res 5:3697–3704

    Google Scholar 

  11. Tan WT, Ooi ST, Lee CK (1993) Removal of chromium (VI) from solution by coconut husk and palm pressed fibers. Environ Technol 14:277–282

    Article  CAS  Google Scholar 

  12. Shimokawa T, Nakamura M, Nagasawa N, Tamada M, Ishihara M (2007) Effect of gamma-ray irradiation on enzymatic hydrolysis of spent corncob substrates from edible mushroom, enokitake (Flammulina velutipes) cultivation. Bull FFPRI 6:27–34

    CAS  Google Scholar 

  13. Sung YJ, Shin SJ (2011) Compositional changes in industrial hemp biomass (Cannabis sativa L.) induced by electron beam irradiation Pretreatment. Biomass Bioenergy 35:3267–3270

    Article  CAS  Google Scholar 

  14. Orozco RS, Hernández PB, Ramírez NF, Morales GR, Luna JS, Montoya AJC (2012) Gamma irradiation induced degradation of orange peels. Energies 5:3051–3063

    Article  CAS  Google Scholar 

  15. Andrews LS, Ahmedna M, Grodner RM, Liuzzo JA, Murano PS, Murano EA, Rao RM, Shane S, Wilson PW (1998) Food preservation using ionizing radiation. Rev Environ Contam Toxicol 154:1–53

    CAS  Google Scholar 

  16. Arvanitoyannis IS, Stratakos ACh, Tsarouhas P (2009) Irradiation applications in vegetables and fruits: a review. Crit Rev Food Sci Nutr 49:427–462

    Article  CAS  Google Scholar 

  17. Lacroix M, Ouattara B (2000) Combined industrial processes with irradiation to assure innocuity and preservation of food products—a review. Food Res Int 33:719–724

    Article  CAS  Google Scholar 

  18. Farkas J (1998) Irradiation as a method for decontaminating food—a review. Int J Food Microbiol 44:189–204

    Article  CAS  Google Scholar 

  19. Schnabel T, Huber H, Grünewald TA, Petutschnigg A (2015) Changes in mechanical and chemical wood properties by electron beam irradiation. Appl Surf Sci 332:704–709

    Article  CAS  Google Scholar 

  20. Sim SF, Mohamed M, Lu NALMI, Sarman NSP, Samsudin SNS (2012) Computer-assisted analysis of fourier transform infrared (FTIR) spectra for characterization of various treated and untreated agriculture biomass. Bioresources 7:5367–5380

    Google Scholar 

  21. Bodîrlâu R, Teacâ CA (2009) Fourier transform infrared spectroscopy and thermal analysis of lignocellulosic fillers treated with organic anhydrides. Rom J Phys 54:93–104

    Google Scholar 

  22. Liu T, Ma Y, Xue S, Shi J (2012) Modifications of structure and physicochemical properties of maize starch by γ-irradiation treatments. LWT—Food Sci Technol 46:156–163

    CAS  Google Scholar 

  23. Saha AK, Rath P, Bhatta D (2000) Influence of γ-irradiation on jute yarn. Indian J Fibre Text 25:271–276

    CAS  Google Scholar 

  24. Daniels T (1973) Thermal Analysis. Kogan Page Limited, London

    Google Scholar 

  25. Liu Y, Chen J, Wu X, Wang K, Su X, Chen L, Zhoua H, Xiongde X (2015) Insights into the effects of γ-irradiation on the microstructure, thermal stability and irradiation derived degradation components of microcrystalline cellulose (MCC). RSC Adv 5:34353–34363

    Article  CAS  Google Scholar 

  26. Tsubaki S, Iida H, Sakamoto M, Azuma JI (2008) Microwave heating of tea residue yields polysaccharides, polyphenols, and plant biopolyester. J Agric Food Chem 56:11293–11299

    Article  CAS  Google Scholar 

  27. Choi JI, Kim JK, Srinivasan P, Kim JH, Park HJ, Byun MW, Lee JW (2009) Comparison of gamma ray and electron beam irradiation on extraction yield, morphological and antioxidant properties of polysaccharides from tamarind seed. Radiat Phys Chem 78:605–609

    Article  CAS  Google Scholar 

  28. Despot R, Hasan M, Rapp AO, Brischke C, Humar M, Welzbacher CR, Ražem D (2012) In: Adrovic F (ed) Gamma Radiation, Ch 14. InTech publisher, Croatia

    Google Scholar 

  29. Han YW, Lillehoj EB, Ciegler A (1981) Solubilization of lignocellulosic materials. US patent no. US4304649 A

Download references

Acknowledgments

Authors would like to thank Dr. M. N. Deo, HP&SRPD-BARC for FTIR analysis, Dr. Naina R. H and Mr. Bhupesh Kalekar, ACD-BARC for TG–DTA analysis and Dr. S. Keny, RPCD-BARC for AAS analysis. We thank Dr. B. N. Jagatap, Head, ACD and Director, Chemistry Group, BARC, India, for his encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harshala Parab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parab, H., Devi, P.S.R., Shenoy, N. et al. Gamma irradiation stability studies of coir pith: a lignocellulosic biosorbent for strontium. J Radioanal Nucl Chem 308, 323–328 (2016). https://doi.org/10.1007/s10967-015-4569-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4569-4

Keywords

Navigation