Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 307, Issue 3, pp 2231–2237 | Cite as

Δ14C and δ 13C as tracers of organic carbon in Baltic Sea sediments collected in coastal waters off Lithuania and in the Gotland Deep

  • Galina Lujanienė
  • Jonas Mažeika
  • Hong-Chun Li
  • Rimantas Petrošius
  • Rūta Barisevičiūtė
  • Kęstutis Jokšas
  • Nijolė Remeikaitė-Nikienė
  • Vitalijus Malejevas
  • Galina Garnaga
  • Algirdas Stankevičius
  • Pavel P. Povinec
Article

Abstract

Signatures of Δ14C and δ 13C of total organic carbon in sediments as well as of total lipid extracts and phospholipid-derived fatty acid fractions isolated from the surface (0–3 cm) sediments collected in the Curonian Lagoon and in the open Baltic Sea were studied. An end-member mixing-model approach was applied to estimate relative contributions of the marine and terrestrial inputs to organic carbon in sediments, and to elucidate a possible leakage of chemical warfare agents at the Gotland Deep dumpsite.

Keywords

Organic carbon Δ14δ13Chemical warfare agents 

Notes

Acknowledgments

The Financial support provided by the Research Council of Lithuania (contract No. MIP-080/2012) is acknowledged. We are grateful for funding support to H–C Li for the AMS14C measurements from NSC 102-2811-M-002-177 and MOST 103-2116-M-002-001 of Taiwan. PPP acknowledges support provided by the EU Research and Development Operational Program funded by the ERDF (project No. 26240220004).

References

  1. 1.
    Bianchil TS, Rolf C, Lamber CD (1997) Sources and composition of particulate organic carbon in the Baltic Sea: the use of plant pigments and lignin-phenols as biomarkers. Mar Ecol Prog Ser 156:25–31CrossRefGoogle Scholar
  2. 2.
    Leipe T, Tauber F, Vallius H, Virtasalo J, Uścinowicz S, Kowalski N, Hille S, Lindgren S, Myllyvirta T (2011) Particulate organic carbon (POC) in surface sediments of the Baltic Sea. Geo-Mar Lett 31:175–188CrossRefGoogle Scholar
  3. 3.
    Wulff FV, Rahm LA, Larsson P (2001) A systems analysis of the Baltic Sea. Springer-Verlag, BerlinCrossRefGoogle Scholar
  4. 4.
    Deutsch B, Alling V, Humborg C, Korth F, Mörth CM (2012) Tracing inputs of terrestrial high molecular weight dissolved organic matter within the Baltic Sea ecosystem. Biogeosciences 9:4465–4475CrossRefGoogle Scholar
  5. 5.
    Maciejewska A, Pempkowiak J (2015) DOC and POC in the southern Baltic Sea. Part II—evaluation of factors affecting organic matter concentrations using multivariate statistical methods. Oceanologia 57:168–176CrossRefGoogle Scholar
  6. 6.
    Hansell DA, Carlson CA (2015) Biogeochemistry of marine dissolved organic matter, 2nd edn. Elsevier, New YorkGoogle Scholar
  7. 7.
    Asmala E, Autio R, Kaartokallio H, Pitkänen L, Stedmon CA, Thomas DN (2013) Bioavailability of riverine dissolved organic matter in three Baltic Sea estuaries and the effect of catchment land use. Biogeosciences 10:6969–6986CrossRefGoogle Scholar
  8. 8.
    Kujawinski EB (2011) The impact of microbial metabolism on marine dissolved organic matter. Ann Rev Mar Sci 3:567–599CrossRefGoogle Scholar
  9. 9.
    Reunamo A, Riemann L, Leskinen P, Jørgensen KS (2013) Dominant petroleum hydrocarbon-degrading bacteria in the Archipelago Sea in South-West Finland (Baltic Sea) belong to different taxonomic groups than hydrocarbon degraders in the oceans. Mar Pollut Bull 72:174–180CrossRefGoogle Scholar
  10. 10.
    Reunamo A (2015) Bacterial community structure and petroleum hydrocarbon degradation in the Baltic Sea. Painosalama Oy, Turku, p 57Google Scholar
  11. 11.
    Logue JB, Stedmon CA, Kellerman AN, Nielsen NJ, Andersson AF, Laudon H, Lindström ES, Kritzberg ES (2015) Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. ISME J. doi: 10.1038/ismej.2015.131 Google Scholar
  12. 12.
    Asmala E, Bowers DG, Autio R, Kaartokallio H, Thomas DN (2014) Qualitative changes of riverine dissolved organic matter at low salinities due to flocculation. J Geophys Res Biogeosci 119:1919–1933CrossRefGoogle Scholar
  13. 13.
    Sanderson H, Fauser P, Thomsen M, Vanninen P, Soderstrom M, Savin Y, Khalikov I, Hirvonen A, Niiranen S, Missiaen T, Gress A, Borodin P, Medvedeva N, Polyak Y, Paka V, Zhurbas V, Feller P (2010) Environmental hazards of sea-dumped chemical weapons. Environ Sci Technol 44:4389–4394CrossRefGoogle Scholar
  14. 14.
    CHEMSEA FINDINGS (2014) Results from the CHEMSEA project—chemical munitions search and assessment, p 88. http://www.chemsea.eu/
  15. 15.
    Garnaga G, Wyse E, Azemard S, Stankevičius A, de Mora S (2006) Arsenic in sediments from the southeastern Baltic Sea. Environ Pollut 144:855–861CrossRefGoogle Scholar
  16. 16.
    Medvedeva N, Polyak Y, Kankaanpää H, Zaytseva T (2009) Microbial responses to mustard gas dumped in the Baltic Sea. Mar Environ Res 68:71–81CrossRefGoogle Scholar
  17. 17.
    Alling V, Humborg C, Mörth C-M, Rahm L, Pollehne F (2008) Tracing terrestrial organic matter by δ 34S and δ 13C signatures in a subarctic estuary. Limnol Oceanogr 53:2594–2602CrossRefGoogle Scholar
  18. 18.
    White DC, Ringelberg DB, Macnaughton SJ, Srinivas A, Schram D (1997) Signature lipid biomarker analysis for quantitative assessment in situ of environmental microbial ecology. In: Eganhouse RP (ed) Molecular markers in environmental chemistry. American Chemical Society, Washington, DC, pp 22–34CrossRefGoogle Scholar
  19. 19.
    Chanton JP, Cherrier J, Wilson RM, Sarkodee-Adoo J, Bosman S, Mickle Graham WM (2012) Radiocarbon evidence that carbon from the Deepwater Horizon spill entered the planktonic food web of the Gulf of Mexico. Environ Res Lett 7:045303CrossRefGoogle Scholar
  20. 20.
    Kim J-H, Peterse F, Willmott V, Klitgaard Kristensen D, Baas M, Schouten S, Sinninghe Damsté JS (2011) Large ancient organic matter contributions to Arctic marine sediments (Svalbard). Limnol Oceanogr 56:1463–1474CrossRefGoogle Scholar
  21. 21.
    Vonk JE, Sánchez-García L, van Dongen BE, Alling V, Kosmach D, Charkin A, Semiletov IP, Dudarev OV, Shakhova N, Roos P, Eglinton TI, Andersson A, Gustafsson Ö (2012) Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature 489:137–140CrossRefGoogle Scholar
  22. 22.
    Slater GF, White HK, Elington TI, Reddy ChM (2005) Determination of microbial carbon sources in petroleum contaminated sediments using molecular 14C analysis. Environ Sci Technol 39:2552–2558CrossRefGoogle Scholar
  23. 23.
    Romano JA Jr, Lukey BJ (2008) Chemical warfare agents: chemistry, pharmacology, toxicology, and therapeutics, 2nd edn. Taylor & Francis Group, LLC, Boca RatonGoogle Scholar
  24. 24.
    Lujaniene G, Jokšas K, Šilobritienė B, Morkūnienė R (2005) Physical and chemical characteristics of137Cs in the Baltic Sea. Radioact Environ 8:165–179CrossRefGoogle Scholar
  25. 25.
    Lujanienė G, Garnaga G, Remeikaitė-Nikienė N, Jokšas K, Garbaras A, Skipitytė R, Barisevičiūtė R, Šilobritienė B, Stankevičius A, Kulakauskaitė I, Ščiglo T (2013) Cs, Am and Pu isotopes as tracers of sedimentation processes in the Curonian Lagoon—Baltic Sea system. J Radioanal Nucl Chem 296:787–792CrossRefGoogle Scholar
  26. 26.
    Tiwari SC, Sureshkumar Singh S, Dkhar MS, Schloter M, Gattinger A (2011) Microbial community structures of degraded and undegraded humid tropical forest soils as measured by phospholipid fatty acid [PLFA] profiles. J Biodiver Ecol Sci 1:2008–9287Google Scholar
  27. 27.
    Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fertil Soils 29:111–129CrossRefGoogle Scholar
  28. 28.
    Kim J-C, Park J-H, Kim I-C, Lee C, Cheoun M-K, Kang J, Song YM, Jeong SC (2001) Progress and protocol at the Seoul National University AMS facility. J Korean Phys Soc 39:778–782Google Scholar
  29. 29.
    Lujanienė G, Remeikaitė-Nikienė N, Garnaga G, Jokšas K, Šilobritienė B, Stankevičius A, Šemčuk S, Kulakauskaitė I (2014) Transport of 137Cs, 241Am and Pu isotopes in the Curonian Lagoon and the Baltic Sea. J Environ Radioact 127:40–49CrossRefGoogle Scholar
  30. 30.
    Szczepańska A, Zaborska A, Maciejewska A, Kuliński K, Pempkowiak J (2012) Distribution and origin of organic matter in the Baltic Sea sediments dated with 210 Pb and 137Cs. Geochronometria 39:1–9CrossRefGoogle Scholar
  31. 31.
    Raymond PA, Bauer JE (2001) Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: a review and synthesis. Org Geochem 32:469–485CrossRefGoogle Scholar
  32. 32.
    Ogrinc N, Fontolan G, Faganeli J, Covelli S (2005) Carbon and nitrogen isotope composition of organic matter in coastal marine sediments (the Gulf of Trieste, N Adriatic Sea). Mar Chem 95:163–181CrossRefGoogle Scholar
  33. 33.
    Mazeas L, Budzinski H, Raymond N (2002) Absence of stable carbon isotope fractionation of saturated and polycyclic aromatic hydrocarbons during aerobic bacterial biodegradation. Org Geochem 33:1259–1272CrossRefGoogle Scholar
  34. 34.
    Li Y, Xiong Yongqiang, Yang Wanying, Xi Yueliang (2009) Compound Specific stable carbon isotopic composition of petroleum hydrocarbons as a tool for tracing the source of oil spills. Mar Pollut Bull 58:114–117CrossRefGoogle Scholar
  35. 35.
    Boutton TW (1991) Stable carbon isotopic ratios of natural materials. II. Atmospheric terrestrial, marine and freshwater environments. In: Coleman DC, Fry B (eds) Carbon isotope techniques. San Diego, Aca-demic, pp 173–195CrossRefGoogle Scholar
  36. 36.
    Kulinski K, Pempkowiak J (2011) The carbon budget of the Baltic Sea. Biogeosci 8:3219–3230CrossRefGoogle Scholar
  37. 37.
    Hua Q, Barbetti M, Rakowski AZ (2013) Atmospheric radiocarbon for the period 1950-2010. Radiocarbon 55:2059–2072CrossRefGoogle Scholar
  38. 38.
    Levin I, Kromer B, Hammer S (2013) Atmospheric Δ14CO2 trend in Western European background air from 2000 to 2012. Tellus B 65:20092CrossRefGoogle Scholar
  39. 39.
    Christiansen Ch, Kunzendorf H, Emeis K-Ch, Endler R, Struck U, Neumann Th, Silkov V (2002) Temporal and spatial sedimentation rate variabilities in the eastern Gotland Basin, the Baltic Sea. Boreas 31:65–74CrossRefGoogle Scholar
  40. 40.
    Hille S, Leipe Th, Seifert T (2006) Spartial variability of sedimentation rates in the Eastern Gotland Basin (Baltic Sea). Oceanologija 48:297–317Google Scholar
  41. 41.
    Lougheed BC, Filipsson HL, Snowball I (2013) Large spatial variations in coastal 14C reservoir age—a case study from the Baltic Sea. Clim Past 9:1015–1028CrossRefGoogle Scholar
  42. 42.
    Purinton BL, DeMaster DJ, Thomas CJ, Smith CR (2008) 14C as a tracer of labile organic matter in Antarctic benthic food webs. Deep-Sea Res II 55:2438–2450CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Galina Lujanienė
    • 1
  • Jonas Mažeika
    • 2
  • Hong-Chun Li
    • 3
  • Rimantas Petrošius
    • 1
    • 2
  • Rūta Barisevičiūtė
    • 1
  • Kęstutis Jokšas
    • 2
    • 4
  • Nijolė Remeikaitė-Nikienė
    • 1
    • 5
  • Vitalijus Malejevas
    • 1
    • 5
  • Galina Garnaga
    • 5
  • Algirdas Stankevičius
    • 1
    • 5
  • Pavel P. Povinec
    • 6
  1. 1.SRI Center for Physical Sciences and TechnologyVilniusLithuania
  2. 2.SRI Nature Research CentreVilniusLithuania
  3. 3.NTUAMS Laboratory at National Taiwan UniversityTaipeiTaiwan
  4. 4.Vilnius UniversityVilniusLithuania
  5. 5.EPA Department of Marine ResearchKlaipedaLithuania
  6. 6.Faculty of Mathematics, Physics and InformaticsComenius UniversityBratislavaSlovakia

Personalised recommendations