Skip to main content
Log in

Investigation of deuteron-induced reactions on natGd up to 30 MeV: possibility of production of medically relevant 155Tb and 161Tb radioisotopes

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Excitation function for the natGd(d,xn)155Tb and natGd(d,n)161Tb nuclear reactions were measured using the standard stacked-foil activation technique in the deuteron energy range of 30 MeV down to 4.2 MeV. The measured cross-section data were compared not only with the earlier reported experimental values but also with the results of a theoretical model as well. Integral yields for155 Tb and161Tb and for their contaminating radioisotopes were also deduced to evaluate the production circumstances. The results revealed that the investigated radioisotopes can not be produced in no-carrier-added form via deuteron way even using 100 % enriched targets (155Gd and 160Gd).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Müller C, Zhernosekov K, Köster U, Johnston K, Hohn A, van der Walt TN, Türler A, Schibli R (2012) A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for α- and β- radionuclide therapy: an in vivo proof-of-concept study with a new receptor-targeted folate derivative. J Nucl Med 53:1951

    Article  Google Scholar 

  2. Dmitriev PP, Molin GA, Dmitrieva ZP (1989) The production of 155Tb for nuclear medicine by 155Gd(p, n), 156Gd(p,2n), 155Gd(d,2n). Atomnaya Energija 66:419

    CAS  Google Scholar 

  3. Rizvi L, Abbas SM, Sarkar S, Goozee G (2000) Radio-immunoconjugates for targ- eted [alpha] therapy of malignant melanoma. Melanom Res 10:281

    Article  CAS  Google Scholar 

  4. Becker CFW, Clayton D, Shapovalov G, Lester HA, Kochendoerfer GG (2004) On-resin assembly of a linkerless lanthanide(III)-based luminescence label and its application to the total synthesis of site-specifically labeled mechanosensitive channels. Bioconjug Chem 15:1118

    Article  CAS  Google Scholar 

  5. Levin VI, Malanin AB, Tronova IN (1981) Production of radionuclides by photonuclear reactions. I. Production of terbium-155 and thulium-167 using the electron accelerator EA-25. Radiochem Radioanal Lett 49:111

    CAS  Google Scholar 

  6. Qaim SM (2001) Therapeutic radionuclides and nuclear data. Radiochim Acta 89:297

    CAS  Google Scholar 

  7. Zaitseva NG, Dmitriev SN, Maslov OD, Molokanovag LG, Starodub YA, Shishkin SV, Shishkina TV (2003) Terbium-149 for nuclear medicine. The production of 149Tb via heavy ions induced nuclear reactions. Czech J Phys 53:A455

    Article  CAS  Google Scholar 

  8. Maiti M (2011) New measurement of cross sections of evaporation residues from the natPr +12C reaction: a comparative study on the production of 149Tb. Phys Rev C 84:044615

    Article  Google Scholar 

  9. Maiti M, Susanta L, Tomar BS (2011) Investigation on the production and isolation of 149,150,151Tb from 12C irradiated natural praseodymium target. Radiochim Acta 99:527

    Article  CAS  Google Scholar 

  10. Tárkányi F, Hermanne A, Takács S, Ditrói F, Csikai J, Ignatyuk AV (2013) Cross-section measurement of some deuteron induced reactions on 160Gd for possible production of the therapeutic radionuclide 161Tb. Radioanal Nucl Chem 298:1385

    Article  Google Scholar 

  11. Tárkányi F, Takács S, Ditrói F, Hermann A, Ignatyuk AV (2014) Activation cross-sections of longer-lived radioisotopes of deuteron induced nuclear reactions on terbium up to 50 MeV. Nucl Instrum Methods B 316:183

    Article  Google Scholar 

  12. Steyn GF, Vermeulen C, Szelecsényi F, Kovács Z, Hohn A, van der Meulen NP, Schibli R, van der Walt TN (2014) Cross sections of proton-induced reactions on 152Gd, 155Gd and 159Tb with emphasis on the production of selected Tb radionuclides. Nucl Instrum Meth B 319:128

    Article  CAS  Google Scholar 

  13. Vermeulen C, Steyn GF, Szelecsényi F, Kovács Z, Suzuki K, Nagatsu K, Fukumura T, Hohn A, van der Walt TN (2012) Cross sections of proton-induced reactions on natGd with special emphasis on the production possibilities of 152Tb and 155Tb. Nucl Instrum Meth B 275:24

    Article  CAS  Google Scholar 

  14. Koning AJ, Rochman D, van der Marck D, Kopecký SJ, Sublet JCh, Pomp S, Sjöstrand H, Forrest R, Bauge E, Henriksson H, Cabellos O, Goriely S, Leppanen J, Leeb H, Plompen A, Mills R (2014) TENDL 2014: TALYS-based evaluated nuclear data library, available from www.talys.eu

  15. Gul K, Hermanne A, Mustafa MG, Nortier FM, Obložinsky P, Qaim SM, Scholten B, Shubin Y, Takács S, Tárkányi FT, Zhuang Z Charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions. IAEA-TECDOC-1211, IAEA, Vienna. http://www-nds.iaea.org/medical/

  16. Székely G (1985) FGM—a flexible gamma-spectrum analysis program for a small computer. Comput Phys Commun 34:313

    Article  Google Scholar 

Download references

Acknowledgments

The Hungarian authors wish to thank the financial support by the Hungarian Research Foundation, (Budapest, OTKA K108669).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc Szelecsényi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szelecsényi, F., Kovács, Z., Nagatsu, K. et al. Investigation of deuteron-induced reactions on natGd up to 30 MeV: possibility of production of medically relevant 155Tb and 161Tb radioisotopes. J Radioanal Nucl Chem 307, 1877–1881 (2016). https://doi.org/10.1007/s10967-015-4528-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4528-0

Keywords

Navigation