Skip to main content
Log in

Examination of local atmospheric transport of radioxenon in the Ottawa River Valley

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Concentrations of the radioxenon isotopes 133Xe and 135Xe were measured as they were released from the stack at the Chalk River medical isotope production facility and were then measured at various sites in the Ottawa River Valley. Dispersion modeling was then used to model the local transport of these radioxenon isotopes between the production facility and the sampling locations. The ratio of 135Xe/133Xe was also examined using an ORIGEN-ARP model was used to understand what factors played a role in the 135Xe/133Xe ratio at the time of release by considering irradiation time, flux, and decay time prior to fractionation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. CTBTO Preparatory Commission (2013) The Treaty: 1963–1977. http://www.ctbto.org/the-treaty/history-1945-1993/1945-54-early-efforts-to-restrain-nuclear-testing/

  2. Carrigan C, Heinle R, Hudson GB, Nitao J, Zucca J (1996) Trace gas emissions on geological faults as indicators of underground nuclear testing. Nature 382:528–531

    Article  CAS  Google Scholar 

  3. Dubasov YV (2010) Underground nuclear explosions and release of radioactive noble gases. Pure Appl Geophys. doi:10.1007/s00024-009-0026-z

    Google Scholar 

  4. Bowyer TW, Schlosser C, Abel KH, Auer M, Hayes JC, Heimbigner TR, McIntyre JI, Panisko ME, Reeder PL, Satorius H, Schulze J, Weiss W (2002) Detection and analysis of xenon isotopes for the comprehensive nuclear-test-ban treaty international monitoring system. J Environ Radioact 59:139–151

    Article  CAS  Google Scholar 

  5. Steinhauser G, Lechermann M, Axelsson A, Böck H, Ringbom A, Saey PRJ, Schlosser C, Villa M (2012) Research reactors as sources of atmospheric radioxenon. J Radioanal Nucl Chem. doi:10.1007/s10967-012-1949-x

    Google Scholar 

  6. Saey PRJ, Auer M, Becker A, Hoffmann E, Nikkinen M, Ringbom A, Tinker R, Schlosser C, Sonck M (2010) The influence on the radioxenon background during the temporary suspension of operations of three major medical isotope production facilities in the Northern Hemisphere and during the start-up of another facility in the Southern Hemisphere. J Environ Radioact. doi:10.1016/j.jenvrad.2010.04.016

    Google Scholar 

  7. Kalinowski MB, Axelsson A, Bean M, Blanchard X, Bowyer TW, Brachet G, Hebel S, McIntyre JI, Peters J, Pistner C, Raith M, Ringbom A, Saey PRJ, Schlosser C, Stocki TJ, Taffary T, Kurt Ungar R (2010) Discrimination of nuclear explosions against civilian sources based on atmospheric xenon isotopic activity ratios. Pure Appl Geophys. doi:10.1007/s00024-009-0032-1

    Google Scholar 

  8. Lowrey JD, Biegalski SR, Osborne AG, Deinert MR (2013) Subsurface mass transport affects the radioxenon signatures that are used to identify clandestine nuclear tests. Geophys Res Lett. doi:10.1029/2012GL053885

    Google Scholar 

  9. Saey PRJ (2009) The influence of radiopharmaceutical isotope production on the global radioxenon background. J Environ Radioact. doi:10.1016/j.jenvrad.2009.01.004

    Google Scholar 

  10. Bowyer TW, Kephart R, Eslinger PW, Friese JI, Miley HS, Saey PRJ (2013) Maximum reasonable radioxenon releases from medical isotope production facilities and their effect on monitoring nuclear explosions. J Environ Radioact. doi:10.1016/j.jenvrad.2012.07.018

    Google Scholar 

  11. Saey PRJ, Ringbom A, Bowyer TW, Zähringer M, Auer M, Faanhof A, Labuschagne C, Al-Rashidi MS, Tippawan U, Verboomen B (2012) Worldwide measurements of radioxenon background near isotope production facilities, a nuclear power plant and at remote sites: the “EU/JA-II” Project. J Radioanal Nucl Chem. doi:10.1007/s10967-012-2025-2

    Google Scholar 

  12. Stocki TJ, Armand P, Heinrich P, Ungar RK, D’Amours R, Korpach EP, Bellivier A, Taffary T, Malo A, Bean M, Hoffman I, Jean M (2008) Measurement and modelling of radioxenon plumes in the Ottawa Valley. J Environ Radioact. doi:10.1016/j.jenvrad.2008.07.009

    Google Scholar 

  13. Johnson C, Lowrey J, Biegalski S, Haas D (2015) Regional transport of radioxenon released from the Chalk River Laboratories medical isotope facility. J Radioanal Nucl Chem. doi:10.1007/s10967-015-4077-6

    Google Scholar 

  14. Health Candada (2013) Dose data from the fixed point surveillance network. http://www.hcsc.gc.ca/ewh-semt/contaminants/radiation/surveill/index-eng.php

  15. Gauld IC, Bowman SM, Horwedel JE (2006) Origen-Arp: automatic rapid processing for spent fuel depletion, decay, and source term analysis. Oak Ridge Nuclear Laboratory, Report ORNL/TM-2005/39, Rev. 5.1, Vol. I, Book 2, Sect. D1

  16. Saey PRJ, Bowyer TW, Ringbom A (2010) Isotopic noble gas signatures released from medical isotope production facilities–simulations and measurements. Appl Radiat Isot. doi:10.1016/j.apradiso.2010.04.014

    Google Scholar 

  17. Cimorelli A (2004) AERMOD–Description of model formulation. EPA-454/R-03-004

  18. Draxler RR, Hess GD (1998) An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition. Aust Meteorol Mag 47:295–308

    Google Scholar 

  19. National Oceanic and Atmospheric Administration (2014) NCDC DSI 3505. https://data.noaa.gov/dataset/integrated-surface-global-hourly-data

  20. Govett M (2014) NOAA/ESRL Radiosonde Database

  21. Stocki TJ, Blanchard X, D’Amours R, Ungar RK, Fontaine JP, Sohier M, Bean M, Taffary T, Racine J, Tracy BL, Brachet G, Jean M, Meyerhof D (2005) Automated radioxenon monitoring for the comprehensive nuclear-test-ban treaty in two distinctive locations: Ottawa and Tahiti. J Environ Radioact. doi:10.1016/j.jenvrad.2004.10.005

    Google Scholar 

  22. Bowyer TW, Abel KH, Hensley WK, Hubbard CW, McKinnon AD, Panisko ME, Perkins RW, Reeder PL, Thompson RC, Warner RA (1996) Automatic radioxenon analyzer for CTBT monitoring. Pacific Northwest National Laboratory, Richland

    Book  Google Scholar 

  23. Stocki TJ, Lo M-C, Bock K, Beaton LA, Tisi SD, Tisi A, Sullivan T, Ungar RK (2009) Monte Carlo simulations of semi-infinite clouds of radioactive noble gases. Radioprotection. doi:10.1051/radiopro/20095134

    Google Scholar 

  24. Grasty RL, Hovgaard J, LaMarre JR (2001) A fence line noble gas monitoring system for nuclear power plants. Radiat Prot Dosim 95:249–256

    Article  CAS  Google Scholar 

  25. Biegalski SR, Saller T, Helfand J, Biegalski KMF (2010) Sensitivity study on modeling radioxenon signals from radiopharmaceutical production facilities. J Radioanal Nucl Chem. doi:10.1007/s10967-010-0533-5

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ed Korpach and Kurt Ungar of Health Canada for providing access to the Fixed Point Surveillance Network dose data. The authors would also like to thank George Dolinar and Tania Pilgrim of Atomic Energy Canada Limited for their assistance in acquiring the stack emissions data. This material is based upon work supported by the U.S. Department of Defense, Defense Threat Reduction Agency under Grant Number HDTRA1-12-1-0018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Johnson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, C., Lowrey, J., Biegalski, S. et al. Examination of local atmospheric transport of radioxenon in the Ottawa River Valley. J Radioanal Nucl Chem 307, 2155–2159 (2016). https://doi.org/10.1007/s10967-015-4488-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4488-4

Keywords

Navigation