Skip to main content
Log in

18F-radiolabeled RGD-A7R-conjugated nano-particles for integrin and VEGF-targeted tumor imaging

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radiolabeled RGD-A7R has been extensively investigated for tumor integrin avb3 and VEGF imaging. In this paper, we designed and synthesized a radiolabeled nano-particle that coated with RGD-A7R. The aim of this study was to evaluate if nano-particles has an advantage in vivo kinetics comparing with RGD-A7R monomers. The targeting properties of 18F-n-BSA-RGD-A7R were tested in U87MG tumor models. The tumor uptake of 18F-n-BSA-RGD-A7R was high compared with background. The improved pharmacokinetics of 18F-n-BSA-RGD-A7R confirmed that the application of nano-technology is effective to develop promising imaging agents for the no-invasive detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jain RK (2001) Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. J Control Release 74:7–25

    Article  CAS  Google Scholar 

  2. Sun X, Yan Y, Liu S, Yang M, Neamati N, Shen B, Chen X (2011) 18F-FPPRGD2 and 18F-FDG PET of response to abraxane therapy. J Nucl Med 52:140–146

    Article  Google Scholar 

  3. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22

    Article  CAS  Google Scholar 

  4. Kassmeyer S, Plendl J, Custodis P, Bahramsoltani M (2009) New insights in vascular development: vasculogenesis and endothelial progenitor cells. Anat Histol Embryol 38:1–11

    Article  CAS  Google Scholar 

  5. Weis SM (2007) Evaluating integrin function in models of angiogenesis and vascular permeability. Methods Enzymol 426:505–528

    Article  CAS  Google Scholar 

  6. Meitar D, Crawford SE, Rademaker AW, Cohn SL (1996) Tumor angiogenesis correlates with metastatic disease, N-myc amplification, and poor outcome in human neuroblastoma. J Clin Oncol 14:405–414

    CAS  Google Scholar 

  7. Tammela T, Enholm B, Alitalo K, Paavonen K (2005) The biology of vascular endothelial growth factors. Cardiovasc Res 65:550–563

    Article  CAS  Google Scholar 

  8. Carpini JD, Karam AK, Montgomery L (2010) Vascular endothelial growth factor and its relationship to the prognosis and treatment of breast, ovarian, and cervical cancer. Angiogenesis 13:43–58

    Article  CAS  Google Scholar 

  9. Jubb AM, Strickland LA, Liu SD, Mak J, Schimidt M (2012) Neuropilin-1 expression in cancer and development. Am J Pathol 226:50–60

    Article  CAS  Google Scholar 

  10. Wu H, Chen H, Pan D, Ma Y, Liang S, Wan Y, Fang Y (2014) Imaging integrin αvβ3 and NRP-1 positive gliomas with a novel fluorine-18 labeled RGD-ATWLPPR heterodimeric peptide probe. Mol Imag Biol 16:781–792

    Article  Google Scholar 

  11. Ma Y, Liang S, Guo J, Wang H (2014) 18F labeled RGD-A7R peptide for dual integrin and VEGF-targeted tumor imaging in mice bearing U87MG tumors. J Labelled Comp Radiopharm 57:627–631

    Article  CAS  Google Scholar 

  12. Liang S, Ma Y, Guo J, Wang H (2015) 18F-radiolabeled analogs of peptide RGD-A7R for simultaneous PET imaging of both αvβ3 and VEGF in tumors. J Radioanal Nucl Chem 303(3):1891–1896

    CAS  Google Scholar 

  13. Liu Z, Yan Y, Chin FT, Wang F, Chen X (2009) Dual integrin and gastrin-releasing peptide receptor targeted tumor imaging using 18F-labeled PEGylated RGD-bombesin heterodimer 18F-FB-PEG3-Glu-RGD-BBN. J Med Chem 52:425–432

    Article  CAS  Google Scholar 

  14. Starzec A, Ladam P, Vassy R, Badache S, Bouchemal N, Navaza A, du Penhoat CH, Perret GY (2007) Structure-function analysis of the antiangiogenic ATWLPPR peptide inhibiting VEGF(165) binding to neuropilin-1 and molecular dynamics simulations of the ATWLPPR/neuropilin-1 complex. Peptides 28:2397–2402

    Article  CAS  Google Scholar 

  15. Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58(24):1532–1555

    Article  CAS  Google Scholar 

  16. Lockman PR, Mumper RJ, Khan MA, Allen DD (2002) Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm 28(1):1–13

    Article  CAS  Google Scholar 

  17. Halye B, FrenkelB E (2008) Nanoparticles for drug delivery in cancer treatment. Urol Oncol 26(1):57–64

    Article  Google Scholar 

  18. Beduneau A, Saulnier P, Benoit J (2007) Active targeting of brain tumors using nanocarriers. Biomaterials 28(33):947–967

    Google Scholar 

  19. Sinha R, Kim GJ, Nie S, Shin DM (2006) Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 5(8):1909–1917

    Article  CAS  Google Scholar 

  20. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant No. 81101066 from National Nature Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufei Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Liang, S., Guo, J. et al. 18F-radiolabeled RGD-A7R-conjugated nano-particles for integrin and VEGF-targeted tumor imaging. J Radioanal Nucl Chem 308, 741–746 (2016). https://doi.org/10.1007/s10967-015-4486-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4486-6

Keywords

Navigation