Skip to main content
Log in

Inorganic elements in sugar samples consumed in several countries

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Sugar is considered safe food ingredient, however, it can present inorganic elements as impurities uptake during cultivation and production process. Therefore, this study aimed at identifies the presence of these elements in granulated and brown sugar samples available for consumption in public places in several countries. The neutron activation technique applying the methodology to analyse larger samples, 5 g-sample, established at CDTN/CNEN based on k 0-method was used to determine the elemental concentrations. Several essential and non-essential elements were determined in a large range of concentrations. The results are discussed comparing to maximum values foreseen in the international and Brazilian legislations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen JCP, CHOU CC (1993) Cane sugar handbook—A manual for cane sugar manufacturers and their chemists. Willey Interscience Publication, New York

    Google Scholar 

  2. Smulderes MJM, Esselink GD, Evereart I, De Riek J, Vosman B (2010) Characterisation of sugar beet (Beta vulgaris L. ssp. vulgaris) varieties using microsatellite markers. BMC Genet 18:11–41

    Google Scholar 

  3. Wojtczak M, Biernasiak J, Papiewska A (2012) Evaluation of microbiological purity of raw and refined white cane sugar. Food Control 25:136–139

    Article  Google Scholar 

  4. Nolte S, Grethe H (2011) EU and world sugar markets in 2010. Zuckerind 136:90–100

    Google Scholar 

  5. Payet B, Sing ASC, Smadja J (2005) Assessment of antioxidant activity of cane brown sugars by ABTS and DPPH radical scavenging Assays: determination of their polyphenolic and volatile constituents. J Agric Food Chem 53:10074–10079

    Article  CAS  Google Scholar 

  6. Honig P (2013) Principles of sugar technology. Elsevier, Amsterdam

    Google Scholar 

  7. Koppel K, Chambers E IV (2010) Development and application of a lexicon to describe the flavor of pomegranate juice. J Sens Stud 25:819–837

    Article  Google Scholar 

  8. Wojtczak M, Krol B (2002) Content of iron, copper and zinc in white sugar samples from polish and other European sugar factories. Food Addit Contam 19:984–989

    Article  CAS  Google Scholar 

  9. Skrbić B, Gyura J (2006) Survey on some contaminants in white sugar from Serbian sugar beet refineries. Food Addit Contam 23:31–35

    Article  Google Scholar 

  10. Van der Poel PW, Schiweck H, Schwartz T (1998) Sugar Technology. Beet and cane sugar manufacture. Verlag Dr Albert Bartens KG, Berlin

    Google Scholar 

  11. De Brujin JM, Bout M (1999) Analytical approach to white sugar quality—anions, cations and their probable origin. Zuckerind 124:532–535

    Google Scholar 

  12. Mohamed AE (1999) Environmental variations of trace element concentrations in Egyptian cane sugar and soil samples (Edfu Factories). Food Chem 65:503–507

    Article  CAS  Google Scholar 

  13. Skrbić B, Durisic-Mladenovic N, Macvanin N (2010) Determination of metal contents in sugar beet (Beta vulgaris) and its products: empirical and chemometrical approach. Food Sci Technol Res 16:123–134

    Article  Google Scholar 

  14. Waheed S, Rahman S, Gill KP (2009) INAA and AAS of different products from sugar cane industry in Pakistan: toxic trace elements for nutritional safety. J Radioanal Nucl Chem 279:725–731

    Article  CAS  Google Scholar 

  15. Allen LB, Siitonen PH, Thompson HC (1997) Methods for the determination of arsenic, cadmium, copper, lead, and tin in sucrose, corn syrups, and high fructose corn syrups by inductively coupled plasma atomic emission spectrometry. J Agric Food Chem 45:162–165

    Article  CAS  Google Scholar 

  16. Dakuzaku CS, Freschi GPG, De Moraes M, Nobrega JA, Neto JAG (2001) Direct determination of arsenic in sugar by GFAAS with transversely heated graphite atomizer and longitudinal Zeeman-effect background correction. At Spectrosc 22:271–275

    CAS  Google Scholar 

  17. Leblebici J, Volkan M (1998) Sample preparation for arsenic, copper, iron, and lead determination in sugar. J Agric Food Chem 46:173–177

    Article  CAS  Google Scholar 

  18. Skrbić B, Durisic-Mladenovic N (2005) Toxic and essential trace elements in Serbian sugarbeet molasses and white sugar. Zuckerind 130:913–991

    Google Scholar 

  19. Skrbić B, Cupic S, Cvejanov J (2003) Determination of heavy metals in beet sugar samples from Vojvodina province. J Environ Prot Ecol 4:657–661

    Google Scholar 

  20. Wojtczak M (2006) Content and composition of insoluble matter in white sugar. Zuckerind 131:567–571

    CAS  Google Scholar 

  21. Oliva SR, Espinosa AJF (2007) Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources. Microchem J 86:131–139

    Article  Google Scholar 

  22. Oliva SR, Rautio P (2004) Could Ornamental plants serve as passive biomonitors in urban areas? J Atmos Chem 49:137–148

    Article  CAS  Google Scholar 

  23. Monaci F, Moni F, Lanciotti E, Grechi D, Bargagli R (2000) Biomonitoring of airborne metals in urban environments: new tracers of vehicle emission, in place of lead. Environ Pollut 107:321–327

    Article  CAS  Google Scholar 

  24. Seregin IV, Kozhevnikova AD, Gracheva VV, Bystrova EI, Ivanov VB (2011) Tissue zinc distribution in maize seedling roots and its action on growth. Russ J Plant Physiol 58:109–117

    Article  CAS  Google Scholar 

  25. Ehlken S, Kirchner G (2002) Environmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: a review. J Environ Radioactiv 58:97–112

    Article  CAS  Google Scholar 

  26. Lew RB (1972) Atomic absorption analysis of heavy metals in factory water and granulated sugar. J Am Soc Sugar Beet Technol 17:144–153

    Article  CAS  Google Scholar 

  27. Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 33:134–139

    Article  Google Scholar 

  28. Gimeno-garcía E, Andreu V, Boluda R (1996) Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ Pollut 92:19–25

    Article  Google Scholar 

  29. He Z, Yang X, Stoffella P (2005) Trace elements in agrosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140

    Article  CAS  Google Scholar 

  30. Seregin IV, Kozhevnikova AD (2008) Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium. Russ J Plant Physiol 55:1–22

    Article  CAS  Google Scholar 

  31. Pohl P, Stecka H, Jamroz P (2012) Solid phase extraction with flame atomic absorption spectrometry for determination of traces of Ca, K, Mg and Na in quality control of white sugar. Food Chem 130:441–446

    Article  CAS  Google Scholar 

  32. Sancho D, Veja M, Debán L, Pardo R, Gonzáles G (1997) Determination of zinc, cadmium and lead in untreated sugar samples by anodic stripping voltammetry. Analyst 122:727–730

    Article  CAS  Google Scholar 

  33. Sancho D, Veja M, Debán L, Pardo R, Gonzáles G (1998) Determination of copper and arsenic in refined beet sugar by stripping voltammetry without sample pretreatment. Analyst 123:743–747

    Article  CAS  Google Scholar 

  34. Awadallah RM, Sherif MK, Mohamed AE, Grass F (1984) Determination of trace elements of Egyptian canesugar (Naga Hammady Factories) by neutron activation, atomic absorption spectrophotometric and inductively coupled plasma-atomic emission spectrometric analysis. Int J Environ Anal Chem 19:41–53

    Article  CAS  Google Scholar 

  35. Ioannidou MD, Zachariadis GA, Anthemidis AN, Stratis JA (2005) Direct determination of toxic trace metals in honey and sugars using inductively coupled plasma atomic emission spectrometry. Talanta 65:92–97

    CAS  Google Scholar 

  36. Wolf W, Mertz W, Masirioni R (1974) Determination of chromium in refined and unrefined sugars by oxygen plasma ashing flameless atomic absorption. J Agric Food Chem 22:1037–1042

    Article  CAS  Google Scholar 

  37. Menezes MABC, Jaćimović R (2006) Optimised k 0-instrumental neutron activation method using the TRIGA MARK I IPR-R1 reactor at CDTN/CNEN, Belo Horizonte, Brazil. Nucl Instrum Methods Phys Res A 564:707–715

    Article  CAS  Google Scholar 

  38. Menezes MABC, Jaćimović R (2014) Implementation of a methodology to analyse cylindrical 5-g sample by neutron activation technique, k 0 method, at CDTN/CNEN, Belo Horizonte, Brazil. J Radioanal Nucl Chem 300:523–531

    Article  CAS  Google Scholar 

  39. HyperLab (2009) Gamma Spectroscopy Software, HyperLabs Software, Budapest, Hungary, 1998–2013 http://hlabsoft.com/. Accessed 9 Jun 2011

  40. Simonits A, Ostor J, Kalvin S, Fazekas B (2003) HyperLab. A new concept in gamma-ray spectrum analysis. J Radioan Nucl Chem 257:589–595

    Article  CAS  Google Scholar 

  41. Kayzero for Windows® (2011), User’s Manual, for reactor neutron activation analysis (NAA) using the k 0 standardisation method, Ver. 2.42. k 0-ware, Heerlen, The Netherlands

  42. International Atomic Energy Agency (2000) Certified reference material IAEA/SOIL-7. IAEA, Vienna

    Google Scholar 

  43. National Research Centre for CRM (1987) Institute of Geophysical and Geochemical Exploration components. Langfang, China: (GBW 0805), Tea Leaves

  44. Statistical methods for use in proficiency testing by interlaboratory comparisons. ISO, Geneva, Switzerland. ISO 13528: 2005

  45. KAYZERO/SOLCOI (2003) User’s Manual for Reactor Neutron Activation Analysis Using the k 0 Standardization Method, Ver. 5a, k 0-Ware, Heerlen, The Netherlands

  46. De Corte F, Simonits A (1994) Vade Mecum for k 0 Users. DMS Research, Geleen

    Google Scholar 

  47. Souza LG, Lima LA, Mischan MM (1976) Ocorrência de metais em açúcar cristal. Determinação por espectrofotometria de absorção atômica. Brasil Açucareiro 8:25–29

    Google Scholar 

  48. ICUMSA, International Commission for Uniform Methods of Sugar Analysis (2004) International Commission for Uniform Methods of Sugar Analysis. England www.icmsa.org Acessed 9 Jul 2013

  49. ANVISA, Brazilian Health Surveillance Agency (1965) www.anvisa.gov.br Accessed 9 Jun 2013

  50. ANVISA, Brazilian Health Surveillance Agency (1998) www.anvisa.gov.br Accessed 9 Jun 2013

  51. Leal AS, Menezes MABC, Rodrigues RR, Andonie O, Vermaercke P, Sneyeres L (2008) A comparative neutron activation analysis study of common generic manipulated and reference medicines commercialized in Brazil. Appl Radiat Isot 66:1307–1312

    Article  CAS  Google Scholar 

  52. Sigel H (1979) Metal ions in biological systems. Marcel Dekker, New York

    Google Scholar 

  53. Sigel H (1986) Concepts on metal ion toxicity. Marcel Dekker, New York

    Google Scholar 

Download references

Acknowledgments

The authors thank CAPES/CNPq and CDTN/CNEN for supporting this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula M. B. Salles.

Additional information

Paula M. B. Salles—course of Postgraduate in Nuclear Sciences and Techniques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salles, P.M.B., Menezes, M.Â.d.B.C., Jaćimović, R. et al. Inorganic elements in sugar samples consumed in several countries. J Radioanal Nucl Chem 308, 485–493 (2016). https://doi.org/10.1007/s10967-015-4478-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4478-6

Keywords

Navigation