Skip to main content
Log in

Utilization of chitosan–clinoptilolite composite for the removal of radiocobalt from aqueous solution: kinetics and thermodynamics

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Chitosan–clinoptilolite composite was prepared and tested for removing radiocobalt from aqueous solution. The composite was characterized with Fourier transform infrared spectroscopy, X-ray diffraction analysis and scanning electron microscopy coupled with energy dispersive X-ray analysis. The sorption of Co(II) on chitosan–clinoptilolite composite was pH-dependent and ionic strength-independent. The kinetic sorption was fitted well by a pseudo-second-order rate equation. The thermodynamic parameters (ΔH 0, ΔS 0, ΔG 0) revealed that the sorption of Co(II) on chitosan–clinoptilolite composite was spontaneous and endothermic. The study showed that chitosan–clinoptilolite composite had excellent potential for the treatment of wastewater containing radiocobalt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mustafa YA, Zaiter MJ (2011) J Hazard Mater 196:228–233

    Article  CAS  Google Scholar 

  2. Rengaraj S, Moon SH (2002) Water Res 36:1783–1793

    Article  CAS  Google Scholar 

  3. Ahmadpour A, Tahmasbi M, Bastami TR, Besharati JA (2009) J Hazard Mater 166:925–930

    Article  CAS  Google Scholar 

  4. Omar H, Arida H, Daifullah A (2009) Appl Clay Sci 44:21–26

    Article  CAS  Google Scholar 

  5. Zong PF, Guo ZQ, He CH, Zhao YL, Liu SH, Wang H, Pan H (2012) J Radioanal Nucl Chem 293:289–297

    Article  CAS  Google Scholar 

  6. Smičiklas I, Dimović S, Plećaš I (2007) Appl Clay Sci 35:139–144

    Article  Google Scholar 

  7. Zhao XH, Luo Y, He CH, Zong PF, Zhang K, Kebwaro JM, Li K, Fu BF, Zhao YL (2015) J Radioanal Nucl Chem 303:837–844

    Article  CAS  Google Scholar 

  8. Yu S, Ren A, Cheng J, Song XP, Chen C, Wang X (2007) J Radioanal Nucl Chem 273:129–133

    Article  CAS  Google Scholar 

  9. Guo ZQ, Li Y, Zhang SW, Niu HH, Chen ZS, Xu JZ (2011) J Hazard Mater 192:168–175

    Article  CAS  Google Scholar 

  10. Repo E, Koivula R, Harjula R, Sillanpaa M (2013) Desalination 321:93–102

    Article  CAS  Google Scholar 

  11. Wang Q, Chen L, Sun YB (2012) J Radioanal Nucl Chem 291:787–795

    Article  CAS  Google Scholar 

  12. Mou J, Wang GJ, Shi WX, Zhang SW (2012) J Radioanal Nucl Chem 292:293–303

    Article  CAS  Google Scholar 

  13. Helal AAA, Aly HF, Khalifa SM, Ahmad MI (2005) Radiochim Acta 93:471–476

    Article  CAS  Google Scholar 

  14. Zhang SW, Niu HH, Guo ZQ, Chen ZS, Wang HP, Xu JZ (2011) J Radioanal Nucl Chem 289:479–487

    Article  CAS  Google Scholar 

  15. Dragan ES, Dinu MV, Timpu D (2010) Bioresour Technol 101:812–817

    Article  CAS  Google Scholar 

  16. Ngah WSW, Teong LC, Wong CS, Hanafiah MAKM (2012) J Appl Polym Sci 125:2417–2425

    Article  Google Scholar 

  17. Wu FC, Tseng RL, Juang RS (2001) J Hazard Mater 81:167–177

    Article  CAS  Google Scholar 

  18. Zhang QH, Sun SY, Li SP, Jiang H, Yu JG (2007) Chem Eng Sci 62:4869–4874

    Article  CAS  Google Scholar 

  19. Lu X, Yin QF, Xin Z, Zhang ZQ (2010) Chem Eng Sci 65:6471–6477

    Article  Google Scholar 

  20. Ho YS, Wase DAJ, Forster CF (1996) Environ Technol 17:71–77

    Article  CAS  Google Scholar 

  21. Orfao JJM, Silva AIM, Pereira JCV, Barata SA, Fonseca IM, Faria PCC, Pereira MFR (2006) J Colloid Interface Sci 296:480–489

    Article  CAS  Google Scholar 

  22. Ho YS (2006) J Hazard Mater 136:681–689

    Article  CAS  Google Scholar 

  23. McKay G, Ho YS, Ng JCY (1999) Sep Purif Methods 28:87–125

    Article  CAS  Google Scholar 

  24. Yüzer H, Kara M, Sabah E, Celik MS (2008) J Hazard Mater 151:33–37

    Article  Google Scholar 

  25. Krishnan KA, Anirudhan TS (2008) Chem Eng J 137:257–264

    Article  CAS  Google Scholar 

  26. Yang ST, Zhao DL, Zhang H, Lu SS, Chen L, Yu XJ (2010) J Hazard Mater 183:632–640

    Article  CAS  Google Scholar 

  27. Sheng GD, Yang ST, Sheng J, Hu J, Tan XL, Wang XK (2011) Environ Sci Technol 45:7718–7726

    Article  CAS  Google Scholar 

  28. Chen CL, Wang XK, Nagatsu M (2009) Environ Sci Technol 43:2362–2367

    Article  CAS  Google Scholar 

  29. Tan XL, Fan QH, Wang XK, Grambow B (2009) Environ Sci Technol 43:3115–3121

    Article  CAS  Google Scholar 

  30. Shukla A, Zhang YH, Dubey P, Margrave JL, Shukla SS (2002) J Hazard Mater 95:137–152

    Article  CAS  Google Scholar 

  31. Weber TW, Chakravorti RK (1974) AIChE J 20:228–238

    Article  CAS  Google Scholar 

  32. Nassar MM, Ewida KT, Ebrahiem EE, Magdy YH, Mheaedi MH (2004) Adsorpt Sci Technol 22:25–37

    Article  CAS  Google Scholar 

  33. Naeem A, Westerhoff P, Mustafa S (2007) Water Res 41:1596–1602

    Article  CAS  Google Scholar 

  34. Mamba BB, Nyembe DW, Mulaba-Bafubiandi AF (2009) Water SA 35:307–314

    CAS  Google Scholar 

  35. Tahir S, Rauf N (2003) J Chem Thermodyn 35:2003–2009

    Article  CAS  Google Scholar 

  36. Qadeer R, Hanif J, Saleem M, Afzal M (1993) Colloid Polym Sci 271:83–90

    Article  CAS  Google Scholar 

  37. Ajmal M, Rao RAK, Anwar S, Ahmad J, Ahmad R (2003) Bioresour Technol 86:147–149

    Article  CAS  Google Scholar 

  38. Sheng GD, Shao DD, Ren XM, Wang XQ, Li JX, Chen YX, Wang XK (2010) J Hazard Mater 178:505–516

    Article  CAS  Google Scholar 

  39. Wang HL, Zhang P, Ma XK, Jiang SW, Huang Y, Zhai LF, Jiang ST (2014) J Hazard Mater 265:158–165

    Article  CAS  Google Scholar 

  40. Li J, Wen F, Pan LS, Liu ZJ, Dong YH (2013) J Radioanal Nucl Chem 295:431–438

    Article  CAS  Google Scholar 

  41. Ren XM, Yang ST, Tan XL, Chen CL, Wang XK (2012) Sci China-Chem 55:1752–1759

    Article  CAS  Google Scholar 

  42. Ren XM, Yang X, Zhao GX, Yang ST, Hu J, Shao DD, Tan XL (2012) J Nucl Radiochem 34:331–336

    CAS  Google Scholar 

  43. Zhao DL, Wang Y, Xuan H, Chen Y, Cao T (2013) J Radioanal Nucl Chem 295:1251–1259

    Article  CAS  Google Scholar 

  44. Olgun A, Atar N (2011) Chem Eng J 167:140–147

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the financial supports by the National Natural Science Foundation of China (Grant No. 11275147), Program for Changjiang Scholars and Innovative Research Team in University (No: IRT1280), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaolin Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhao, X., Deng, J. et al. Utilization of chitosan–clinoptilolite composite for the removal of radiocobalt from aqueous solution: kinetics and thermodynamics. J Radioanal Nucl Chem 308, 701–709 (2016). https://doi.org/10.1007/s10967-015-4475-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4475-9

Keywords

Navigation