Skip to main content
Log in

Enhanced anion sensing by γ-irradiated polyphenol capped iron oxide nanoparticles

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A novel method was designed for the synthesis of polyphenol capped amorphous iron oxide nanoparticles (ION) using an agro waste (peanut skin). The synthesized nanoparticles were characterized by absorption spectroscopy, TEM, SEM, IR, Raman and XRD. An increased rate of formation of the nanoparticles is observed upon low dose gamma irradiation. ION shows specific spectral features with perchlorate anion even in presence of other anions selected for the anion sensing study. The nanoparticles formed in presence of irradiation was found even more sensitive to lower concentration of perchlorate owing to its finely dispersed nature and increased surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vella AJ, Chircop C, Micallef T, Pace C (2015) Perchlorate in dust fall and indoor dust in Malta: an effect of fireworks. Sci Total Environ 521–522:46–51

    Article  Google Scholar 

  2. Susarla S, Collette TW, Garrison AW, Wolfe NL, McCutcheon SC (1999) Perchlorate identification in fertilizers. Environ Sci Technol 33:3469–3472

    Article  CAS  Google Scholar 

  3. Steinmaus C, Miller MD, Cushing L, Blount BC, Smith AH (2013) Combined effects of perchlorate, thiocyanate, and iodine on thyroid function in the National Health and Nutrition Examination Survey 2007–08. Environ Res 123:17–24

    Article  CAS  Google Scholar 

  4. Wu F, Chen H, Zhou X, Zhang R, Ding M, Liu Q, Peng KL (2013) Pulmonary fibrosis effect of ammonium perchlorate exposure in rabbit. Arch Environ Occup Health 68:161–165

    Article  CAS  Google Scholar 

  5. Mosier-Boss PA, Putnam MD (2014) Detection of perchlorate using Ag/DMAH+ SERS-active capture matrices. Spectrochim Acta Part A 133:156–164

    Article  CAS  Google Scholar 

  6. Nuntawong N, Eiamchai P, Limwichean S, Wong-ek B, Horprathum M, Patthanasettakul V, Leelapojanaporn A, Nakngoenthong S, Chindaudom P (2013) Trace detection of perchlorate in industrial-grade emulsion explosive with portable surface-enhanced Raman spectroscopy. Forensic Sci Int 233:174–178

    Article  CAS  Google Scholar 

  7. Wagner HP, Pepich BV, Pohl C, Srinivasan K, Lin R, DeBorba B, Munch DJ (2007) Selective method for the analysis of perchlorate in drinking waters at nanogram per liter levels, using two-dimensional ion chromatography with suppressed conductivity detection. J Chromatogr A 1155:15–21

    Article  CAS  Google Scholar 

  8. Braik M, Dridi C, Ali A, Abbas MN, Ben Ali M, Errachid A (2015) Development of a perchlorate sensor based on Co-phthalocyanine derivative by impedance spectroscopy measurements. Org Electr 16:77–86

    Article  CAS  Google Scholar 

  9. Kharisov BI, Dias HVR, Kharissova OV, Jime´nez-Pe´rez VM, Pe´rez BO, Mun˜ozFloresa B (2012) Iron-containing nanomaterials: synthesis, properties, and environmental applications. RSC Adv 2:9325–9358

    Article  CAS  Google Scholar 

  10. Hoanga VV, Ganguli D (2012) Amorphous nanoparticles—experiments and computer simulations. Phys Rep 518:81–140

    Article  Google Scholar 

  11. Ramesh R, Ashok K, Bhalero GM, Ponnusamy S, Muthamizhchelvan C (2010) Synthesis and properties of α-Fe2O3 nanorods. Cryst Res Technol 45:965–968

    Article  CAS  Google Scholar 

  12. Sugimoto T, Matijevic E (1980) Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels. J Colloid Interface Sci 74:227–243

    Article  CAS  Google Scholar 

  13. Tartaj P, Md. Morales P, Veintemillasr SV, Gonzalez TC, Serna JC (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D 36:R182–R197

    Article  CAS  Google Scholar 

  14. Suslick SK, Choe BS, Cichowlas AA, Grinstaff WM (1991) Applications of sonochemistry to material synthesis. Nature 353:414–416

    Article  CAS  Google Scholar 

  15. Srivastava DN, Perkas N, Gedanken A, Felner I (2002) Sonochemical synthesis of mesoporous iron oxide and accounts of its magnetic and catalytic properties. J Phys Chem B 106:1878–1883

    Article  CAS  Google Scholar 

  16. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356

    Article  CAS  Google Scholar 

  17. Biswal J, Misra N, Bordeand LC, Sabharwal S (2013) Synthesis of silver nanoparticles in methacrylic acid solution by gamma radiolysis and their application for estimation of dopamine at low concentrations. Radiat Phys Chem 83:67–73

    Article  CAS  Google Scholar 

  18. Yakabuskie PA, Joseph JM, Keech P, Botton GA, Guzonas D, Wren JC (2011) Iron oxyhydroxide colloid formation by gamma-radiolysis. Phys Chem Chem Phys 13:7198–7206

    Article  CAS  Google Scholar 

  19. dL. Francisco ML, Resurreccion AVA (2012) Development of a reversed-phase high performance liquid chromatography (RP-HPLC) procedure for the simultaneous determination of phenolic compounds in peanut skin extracts. LWT Food Sci Technol 47:189–198

    Article  CAS  Google Scholar 

  20. Lester GE, Lewers KS, Medina MB, Saftner RA (2012) Comparative analysis of strawberry total phenolics via fast blue Bb vs. Folin–Ciocalteu: assay interference by ascorbic acid. J Food Compos Anal 27:102–107

    Article  CAS  Google Scholar 

  21. Mahajan S, Mahajan RK (2012) Interactions of phenothiazine drugs with bile salts: micellization and binding studies. J Colloid Interface Sci 387:194–204

    Article  CAS  Google Scholar 

  22. de Camargo AC, Bismara MA, d’Arce R, Gallo CR, Shahidi F (2015) Gamma-irradiation induced changes in microbiological status, phenolic profile and antioxidant activity of peanut skin. J Funct Foods 12:129–143

    Article  Google Scholar 

  23. Phu ND, Ngo DT, Hoang LH, Luong NH, Chau N, Hai NH (2011) Crystallization process and magnetic properties of amorphous iron oxide nanoparticles. J Phys D 44:345002–345008

    Article  Google Scholar 

  24. Oh SJ, Cook DC, Townsend HE (1998) Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfine Interact 112:59–65

    Article  CAS  Google Scholar 

  25. Clarkson J, Tonge PJ, Taylor KL, Dunaway-Mariano D, Carey PR (1997) Raman study of the polarizing forces promoting catalysis in 4-chlorobenzoate-CoA dehalogenase. Biochemistry 36:10192–10199

    Article  CAS  Google Scholar 

  26. Iqbal MZ, Ma X, Chen T, Zhang L, Ren W, Xiang L, Wu A (2015) Silica-coated super-paramagnetic iron oxide nanoparticles (SPIONPs): a new type contrast agent of T1 magnetic resonance imaging (MRI) J. Mater Chem B (in press)

  27. Hoang VV, Ganguli D (2012) Amorphous nanoparticles—experiments and computer simulations. Phys Rep 518:81–140

    Article  CAS  Google Scholar 

  28. Racuciu M, Creanga DE, Airinei A, Chicea D, Badescu V (2010) Synthesis and properties of magnetic nanoparticles coated with biocompatible compounds. Mater Sci Pol 28:609–616

    CAS  Google Scholar 

Download references

Acknowledgments

We express sincere thanks to UGC-DAE, CSR/PROJECT/ACCT/2014/0057/0085 for necessary funding. We are thankful to Mr. Nayan Saha, Department of Chemical Technology, University of Calcutta, India for measuring the XRD. We also thank Ms. Urmila Goswami, and Mr. Pratyush Sengupta Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, India, for obtaining TEM and SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamalika Sen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, Z., Sarkar, K., Saha, A. et al. Enhanced anion sensing by γ-irradiated polyphenol capped iron oxide nanoparticles. J Radioanal Nucl Chem 308, 517–525 (2016). https://doi.org/10.1007/s10967-015-4473-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4473-y

Keywords

Navigation