Skip to main content
Log in

Tetraphenylimidodiphosphinate as solid phase extractant for preconcentrative separation of thorium from aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A simple and reliable method for solid phase extraction of thorium using tetraphenylimidodiphosphinate is presented. The solid phase extraction process was optimized at equilibrium time 3 h, pH = 4.5, initial concentration 30 mg L−1 and extractant dosage 0.01 g with 98.95 % of removal efficiency and 29.68 mg g−1 of adsorption capacity. The interfering ions experiments indicated that it had almost no effect on thorium adsorption. Kinetics data follow the pseudo-first-order model and equilibrium data agreed with the Langmuir isotherm model very well. FT-IR analysis indicated that imino group and phosphoryl acted as the significant roles in the solid phase extraction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Elif AB, Melek M, Muruvvet Y (2010) Preconcentration of uranium(VI) and thorium(IV) from aqueous solutions using low-cost abundantly available sorbent. J Radioanal Nucl Chem 283:471–476

    Article  Google Scholar 

  2. Benitez-Nelson CR, Moore WS (2006) Future applications of 234Th in aquatic ecosystems. Mar Chem 100:163–165

    Article  CAS  Google Scholar 

  3. Rao TP, Metilda P, Gladis JM (2006) Preconcentration techniques for uranium (VI) and thorium(IV) prior to analytical determination-an overview. Talanta 68:1047–1064

    Article  CAS  Google Scholar 

  4. Anirudhan TS, Rijith S, Tharun AR (2010) Adsorptive removal of thorium(IV) from aqueous solutions using poly(methacrylic acid)-grafted chitosan/bentonite composite matrix: process design and equilibrium studies. Colloids Surf A Physicochem Eng Asp 368:13–22

    Article  CAS  Google Scholar 

  5. Kumar A, Ali M, Mishra P, Pandey BN, Sharma P, Mishra KP (2009) Thorium-induced neurobehavioural and neurochemical alterations in Swiss mice. Int J Radiat Biol 85:338–347

    Article  CAS  Google Scholar 

  6. Ishikawa Y, Wada I, Fukumoto M (2002) Cancers induced by alpha particles from Thorotrast. Int Congr Ser 1236:191–194

    Article  Google Scholar 

  7. Metilda P, Gladis JM, Rao TP (2003) Quinoline-8-ol modified cellulose as solid phase extractant (SPE) for preconcentrative separation and determination of thorium(IV). Radiochim Acta 91:737–741

    Article  CAS  Google Scholar 

  8. Loeff MR, Sarin MM, Baskaran M, Benitez-Nelson C, Buesseler KO, Charette M, Dai M, Gustafsson O, Masque P, Morris PJ, Orlandini K, Baena AR, Savoye N, Schmidt S, Turnewitsch R, Voge I, Waples JT (2006) A review of present techniques and methodological advances in analyzing 234Th in aquatic systems. Mar Chem 100:190–212

    Article  Google Scholar 

  9. Gulin SB, Gorelov YS, Sidorov IG, Proskurnin VY (2013) Disk mini-adsorbers with radial flow for determination of 234Th concentration in seawater. J Radioanal Nucl Chem 295:855–860

    Article  CAS  Google Scholar 

  10. Shaeri M, Torab-Mostaedi M, Kelishami AR (2015) Solvent extraction of thorium from nitrate medium by TBP, Cyanex272 and their mixture. J Radioanal Nucl Chem 303:2093–2099

    CAS  Google Scholar 

  11. Radchenko V, Engle JW, Wilson JJ, Maassen JR, Nortier FM, Taylor WA, Birnbaum ER, Hudston LA, John KD, Fassbender ME (2015) Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical purposes. J Chromatogr A 1380:55–63

    Article  CAS  Google Scholar 

  12. Chellam S, Clifford DA (2002) Physical-chemical treatment of groundwater contaminated by leachate from surface disposal of uranium tailings. J Environ Eng 128:942–952

    Article  CAS  Google Scholar 

  13. Kuruc J, Strisovska J, Galanda D, Dulanska S, Matel L, Jerigova M, Velic D (2012) Secondary ion mass spectrometry and alpha-spectrometry of electrodeposited thorium films. J Radioanal Nucl Chem 292:973–981

    Article  CAS  Google Scholar 

  14. Sharma S, Balasubramanian K (2015) Molecularly imprinted and nanoengineered camphor soot functionalized PAN-nanofibers for effluent treatment. RSC Adv. 5:31732–31741

    Article  CAS  Google Scholar 

  15. Nilchi A, Dehaghan TS, Garmarodi SR (2013) Solid phase extraction of uranium and thorium on octadecyl bonded silica modified with Cyanex 302 from aqueous solutions. J Radioanal Nucl Chem 295:2111–2115

    Article  CAS  Google Scholar 

  16. Teng MY, Zhang S, Jiang SW, Yang X, Lin C, Zheng YX, Wang L, Wu D, Zuo JL, You XZ (2012) Electron mobility determination of efficient phosphorescent iridium complexes with tetraphenylimidodiphosphinate ligand via transien electrolumine-scence method. Appl Phys Lett 100:073303

    Article  Google Scholar 

  17. Zhu YC, Zhou L, Li HY, Xu QL, Teng MY, Zheng YX, Zuo JL, Zhang HJ, You XZ (2011) Highly efficient green and blue-green phosphorescent OLEDs based on iridium complexes with the tetraphenylimidodi-phosphinate ligand. Adv Mater 23:4041–4046

    Article  CAS  Google Scholar 

  18. Magennis SW, Parsons S, Pikramenou Z (2002) Assembly of hydrophobic shells and shields around lanthanides. Chem Eur J 8:5761–5771

    Article  CAS  Google Scholar 

  19. Xu C, Wang J, Yang T, Chen X, Liu X, Ding X (2015) Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile, using response surface methodology. Carbohydr Polym 121:79–85

    Article  CAS  Google Scholar 

  20. Yang SK, Tan N, Yan XM, Long W, Lin YC (2013) Thorium(IV) removal from aqueous medium by citric acid treated mangrove endophytic fungus Fusarium sp. #ZZF51. Mar Pollut Bull 74:213–219

    Article  CAS  Google Scholar 

  21. Williams DJ (1980) Complexes of Bi(III) with tetraphenylimidodiphosphinate ligands. Inorg Nucl Chem Lett. 16:189–193

    Article  CAS  Google Scholar 

  22. Zhang N, Liu HJ, Sun YK, Long W, Peng B (2015) Adsorption of thorium by materials of 6-O-monotosyl-deoxy-β-cyclodextrin including N, N´-diphenyl thiourea. At Energy Sci Technol 49:19–25

    Google Scholar 

  23. Zafar S, Khalid N, Mirza ML (2015) Sequestering of thorium ions from aqueous media on rice husk: equilibrium, kinetic and thermodynamic studies. Radiochim Acta 103:385–395

    Article  CAS  Google Scholar 

  24. Jiang MY, Ohnuki T, Yamasaki S, Tanaka K, Utsunomiya S (2013) Adsorption of ytterbium onto Saccharomyces cerevisiae fungal cells: a pH-dependent contribution of phosphoryl functional. J Radioanal Nucl Chem 295:2283–2287

    Article  CAS  Google Scholar 

  25. Li XG, Liu R, Huang MR (2005) Facile synthesis and highly reactive silver ion adsorption of novel microparticles of sulfodiphenylamine and diaminonaph. Chem Mater 17:5411–5419

    Article  CAS  Google Scholar 

  26. Yang SK, Tan N, Yan XM, Chen F, Lin YC (2013) Adsorption of thorium(IV) from aqueous solution by non-living biomass of mangrove endophytic fungus Fusarium sp. #ZZF51. J Radioanal Nucl Chem 298:827–833

    Article  CAS  Google Scholar 

  27. Giri AK, Patel RK, Mahapatra SS (2011) Artificial neural network (ANN) approach for modelling of arsenic (III) biosorption from aqueous solution by living cells of Bacillus cereus biomass. Chem Eng J 178:15–25

    Article  CAS  Google Scholar 

  28. Wang JS, Hu XJ, Liu YG, Xie XB, Bao ZL (2010) Biosorption of uranium (VI) by immobilized Aspergillus fumigatus beads. J Environ Radioact 101:504–508

    Article  CAS  Google Scholar 

  29. Kumar R, Bishnoi NR, Garima Bishnoi K (2008) Biosorption of chromium(VI) from aqueous solution and electroplating wastewater using fungal biomass. Chem Eng J 135:202–208

    Article  CAS  Google Scholar 

  30. Lin WO, Guimaraes CN, Desouza MC, Dacosta JBN (1994) Synthesis and preliminary complexation studies of dialkylphosphorylthiourea and guanidines. Phosphorus Sulfur Silicon Relat Elements 92:1–9

    Article  CAS  Google Scholar 

  31. Wang P, Du M, Zhu H, Bao S, Yang T, Zou M (2015) Structure regulation of silica nanotubes and their adsorption behaviors for heavy metal ions: pH effect, kinetics, isotherms and mechanism. J Hazard Mater 286:533–544

    Article  CAS  Google Scholar 

  32. Liu YG, Fan T, Zeng GM, Li X, Tong Q, Ye F, Zhou M, Xu WH, Huang YE (2006) Removal of cadmium and zinc ions from aqueous solution by living Aspergillus niger. Trans Nonferrous Met Soc China 16:681–686

    Article  CAS  Google Scholar 

  33. Ho YS (2004) Selection of optimum sorption isotherm. Lett Editor/Carbon 42:2115–2116

    CAS  Google Scholar 

  34. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  35. Hojati S, Landi A (2015) Kinetics and thermodynamics of zinc removal from a metal-plating wastewater by adsorption onto an Iranian sepiolite. Int J Environ Sci Technol 12:203–210

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the anonymous reviewers for their constructive comments which have improved the quality of this paper. We also acknowledge Dr. Zhou Shiming (Tian Jing University) for assistance with SEM, 1H NMR, 31P{1H} NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Wang, Y. & He, C. Tetraphenylimidodiphosphinate as solid phase extractant for preconcentrative separation of thorium from aqueous solution. J Radioanal Nucl Chem 308, 393–401 (2016). https://doi.org/10.1007/s10967-015-4454-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4454-1

Keywords

Navigation