Skip to main content
Log in

Adsorption and desorption of uranium(VI) by Fe–Mn binary oxide in aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The adsorption and desorption behaviors of uranium(VI) by a synthetic Fe/Mn (mass ratio of 57:1) binary oxide (FMBO) has been investigated. The pseudo-second-order kinetic and the Dubinin–Radushkevich isotherm models showed.that the adsorption process involved chemical adsorption. The calculated thermodynamic parameters (ΔH°, ΔS°, ΔG°) indicated that the adsorption process of uranium(VI) onto FMBO was spontaneous and endothermic. The desorption experiments indicated that the high desorption rate of uranium(VI) from FMBO by organic acids would increase the total solubility of uranium (in the exchangeable form), which would in turn enhance bio-absorption of uranium from soil via phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gavrilescu M, Pavel LV, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163:475–510

    Article  CAS  Google Scholar 

  2. Malaviya P, Singh A (2012) Phytoremediation strategies for remediation of uranium-contaminated environments: a review. Crit Rev Environ Sci Technol 42:2575–2647

    Article  CAS  Google Scholar 

  3. Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    Article  CAS  Google Scholar 

  4. Shahandeh H, Hossner LR (2002) Role of soil properties in phytoaccumulation of uranium. Water Air Soil Pollut 141:165–180

    Article  CAS  Google Scholar 

  5. Huang JW, Blaylock MJ, Kapulnik Y, Ensley BD (1998) Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ Sci Technol 32:2004–2008

    Article  CAS  Google Scholar 

  6. Vandenhove H, Vanhoudt N, Duquene L, Antunes K, Wannijn J (2014) Comparison of two sequential extraction procedures for uranium fractionation in contaminated soils. J Environ Radioact 137:1–9

    Article  CAS  Google Scholar 

  7. Walter M, Arnold T, Reich T, Bernhard G (2003) Sorption of uranium (VI) onto ferric oxides in sulfate-rich acid waters. Environ Sci Technol 37:2898–2904

    Article  CAS  Google Scholar 

  8. Dodge CJ, Francis AJ, Gillow JB, Halada GP, Eng C, Clayton CR (2002) Association of uranium with iron oxides typically formed on corroding steel surfaces. Environ Sci Technol 36:3504–3511

    Article  CAS  Google Scholar 

  9. Wang Z, Lee SW, Catalano JG, Lezama-Pacheco JS, Bargar JR, Tebo BM, Giammar DE (2013) Adsorption of uranium (VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling. Environ Sci Technol 47:850–858

    Article  CAS  Google Scholar 

  10. Zhang G, Qu J, Liu H, Liu R, Wu R (2007) Preparation and evaluation of a novel Fe–Mn binary oxide adsorbent for effective arsenite removal. Water Res 41:1921–1928

    Article  CAS  Google Scholar 

  11. Zhang GS, Qu JH, Liu HJ, Liu RP, Li GT (2007) Removal mechanism of As(III) by a novel Fe-Mn binary oxide adsorbent: oxidation and sorption. Environ Sci Technol 41:4613–4619

    Article  CAS  Google Scholar 

  12. Liu H, Yang Y, Kang J, Fan M, Qu J (2012) Removal of tetracycline from water by Fe–Mn binary oxide. J Environ Sci 24:242–247

    Article  CAS  Google Scholar 

  13. Zhang G, Liu H, Qu J, Jefferson W (2012) Arsenate uptake and arsenite simultaneous sorption and oxidation by Fe–Mn binary oxides: influence of Mn/Fe ratio, pH, Ca2+, and humic acid. J Colloid Interface Sci 366:141–146

    Article  CAS  Google Scholar 

  14. Zhang G, Liu H, Liu R, Qu J (2009) Adsorption behavior and mechanism of arsenate at Fe–Mn binary oxide/water interface. J Hazard Mater 168:820–825

    Article  CAS  Google Scholar 

  15. Jamshidi Gohari R, Lau WJ, Matsuura T, Ismail AF (2013) Fabrication and characterization of novel PES/Fe–Mn binary oxide UF mixed matrix membrane for adsorptive removal of As(III) from contaminated water solution. Sep Purif Technol 118:64–72

    Article  CAS  Google Scholar 

  16. Xu W, Wang H, Liu R, Zhao X, Qu J (2011) The mechanism of antimony(III) removal and its reactions on the surfaces of Fe–Mn binary oxide. J Colloid Interface Sci 363:320–326

    Article  CAS  Google Scholar 

  17. Šarić A, Musić S, Nomura K, Popović S (1998) Microstructural properties of Fe-oxide powders obtained by precipitation from FeCl3 solutions. Mater Sci Eng B 56:43–52

    Article  Google Scholar 

  18. Sun Y, Yang S, Chen Y, Ding C, Cheng W, Wang X (2015) Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study. Environ Sci Technol 49:4255–4262

    Article  CAS  Google Scholar 

  19. Sun Y, Shao D, Chen C, Yang S, Wang X (2013) Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline. Environ Sci Technol 47:9904–9910

    Article  CAS  Google Scholar 

  20. Erkaya IA, Arica MY, Akbulut A, Bayramoglu G (2014) Biosorption of uranium(VI) by free and entrapped Chlamydomonas reinhardtii: kinetic, equilibrium and thermodynamic studies. J Radioanal Nucl Chem 299:1993–2003

    Article  CAS  Google Scholar 

  21. Wang H, Ma L, Cao K, Geng J, Liu J, Song Q, Yang X, Li S (2012) Selective solid-phase extraction of uranium by salicylideneimine-functionalized hydrothermal carbon. J Hazard Mater 229–230:321–330

    Article  Google Scholar 

  22. Li Z, Chen F, Yuan L, Liu Y, Zhao Y, Chai Z, Shi W (2012) Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chem Eng J 210:539–546

    Article  CAS  Google Scholar 

  23. Ding D, Fu P, Li L, Xin X, Hu N, Li G (2014) U(VI) ion adsorption thermodynamics and kinetics from aqueous solution onto raw sodium feldspar and acid-activated sodium feldspar. J Radioanal Nucl Chem 299:1903–1909

    Article  CAS  Google Scholar 

  24. Han F, Zhang GH, Gu P (2012) Adsorption kinetics and equilibrium modeling of cesium on copper ferrocyanide. J Radioanal Nucl Chem 295:369–377

    Article  Google Scholar 

  25. Xu J, Chen M, Zhang C, Yi Z (2013) Adsorption of uranium(VI) from aqueous solution by diethylenetriamine-functionalized magnetic chitosan. J Radioanal Nucl Chem 298:1375–1383

    Article  CAS  Google Scholar 

  26. Han R, Zou W, Wang Y, Zhu L (2007) Removal of uranium(VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect. J Environ Radioact 93:127–143

    Article  CAS  Google Scholar 

  27. Katsoyiannis IA (2007) Carbonate effects and pH-dependence of uranium sorption onto bacteriogenic iron oxides: kinetic and equilibrium studies. J Hazard Mater 139:31–37

    Article  CAS  Google Scholar 

  28. Sharma YC, Uma Upadhyay SN (2009) Removal of a cationic dye from wastewaters by adsorption on activated carbon developed from coconut coir. Energy Fuels 23:2983–2988

    Article  CAS  Google Scholar 

  29. Sillén LG, Martell AE (1970) Stability constants of metal ion complexes supplement 1. Chem. Soc, London

    Google Scholar 

  30. Shahandeh H, Hossner LR (2002) Role of soil properties in phytoaccumulation of uranium. Water Air Soil Pollut 141:165–180

    Article  CAS  Google Scholar 

  31. Lozano JC, Rodríguez PB, Tomé FV, Calvo CP (2011) Enhancing uranium solubilization in soils by citrate, EDTA, and EDDS chelating amendments. J Hazard Mater 198:224–231

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the National Fund for Fostering Talents of Basic Science (J1210004), the State 863 project of China (2012AA063503), and the National Natural Science Foundations of China (11475120, 10776021, 21271132, CY112C018) for funding this research. We also wish to thank the Comprehensive training platform of specialized laboratory, College of Chemistry in Sichuan University (Chengdu, China), the Analytical & Testing Center, Sichuan University (Chengdu, China), Engineering Research Center in Biomaterials, Sichuan University (Chengdu, China), and University of Macau (Taipa, Macau) for providing financial and technical support. Dr. Ian William Wyman from Queen’s University, Canada, is acknowledged for his assistance in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruibing Wang, Dong Zhang or Chuanqin Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, L., An, S., Ding, J. et al. Adsorption and desorption of uranium(VI) by Fe–Mn binary oxide in aqueous solutions. J Radioanal Nucl Chem 308, 545–554 (2016). https://doi.org/10.1007/s10967-015-4453-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4453-2

Keywords

Navigation